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Abstract

Some new estimates for the eigenvalue decay rate of the Lyapunov

equation AX + XA
T = B with a low rank right-hand side B are

derived. The new bounds show that the right-hand side B can greatly

influence the eigenvalue decay rate of the solution. This suggests a new

choice of the ADI-parameters for the iterative solution. The advantage

of these new parameters is illustrated on second order damped systems

with a low rank damping matrix.
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1 Introduction

In this paper we consider two related topics concerning the solution of the
continuous-time Lyapunov equation

AX + XAT = −GGT , (1.1)

∗part of this work was done while the author was visiting University of Kentucky,

Department of Mathematics, Lexington, Kentucky, USA under the support of Postdoc-

toral Research Award from the National Foundation for Science, Higher Education and

Technological Development of the Republic of Croatia.
†University of Osijek, Department of Mathematics, 31000 Osijek, Croatia,

email:ntruhar@mathos.hr
‡Lehrgebiet Mathematische Physik, Fernuniversität, 58084 Hagen, Germany

kresimir.veselic@fernuni-hagen.de

1



where A ∈ R
m×m is assumed to be stable and G ∈ R

m×s with rank(G) =
s � m.

Our first result contains a bound for the difference between the traces of
the solution X of Lypunov equation (1.1) and its ADI approximation. From
this bound it can be seen that the right-hand side of Lyapunov equation
can sometimes greatly influence the eigenvalue decay rate of the solution.
The second result contains a proposal for a new suboptimal choice of ADI
parameters suggested by the aforementioned new error bound.

2 Bound for eigenvalue decay rate

We consider the following Lyapunov equation

AX + XAT = −GGT ,

where A ∈ R
m×m is stable, and G ∈ R

m×s with rank(G) = s � m.
The main result of this section is a new bound which generalizes bounds

obtained by Antoulas, Sorensen and Zhou [1], Sorensen and Zhou [8] and
Penzl [5] and [7].

We start with a simple generalization of the first step, from the analysis
in [8] and [7] by dropping the assumption on diagonalizability. ADI iterates
[14] (Xl)

∞
l=0 generated by an initial matrix X0 are

Xl = spl
(A)Xl−1s

∗
pl
(A) − 2 Re(pl) (A + p̄lI)−1GGT (A + p̄lI)−∗ , (2.2)

where spl
(A) = (A − plI)(A + p̄lI)−1. Since the solution X of (1.1) satisfies

the Stein equation (for more details see [8])

X = spl
(A)Xs∗pl

(A) − 2 Re(pl) (A + p̄lI)−1GGT (A + p̄lI)−∗ ,

one can see that X is a stationary point of mapping (2.2). Hence

X − Xl = spl
(A)(X − Xl−1)s

∗
pl
(A) ,

By choosing X0 = 0, we obtain

X − Xl = s{p1,...,pl}(A) X s∗{p1,...,pl}(A) ,

where

s{p1,...,pl}(A) =
l∏

k=1

(A − pkI)(A + p̄kI)−1 .
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If we set ADI parameters {p1, . . . , pm} to be equal to the eigenvalues
of the matrix A, that is {p1, . . . , pm} = σ(A) (counted according to their
multiplicities), then from Hamilton-Cayley theorem it follows that

X − Xm = 0 . (2.3)

The above fact will be used later in our investigations.
Since the right-hand side of the Lyapunov equation (1.1) has the rank

s � m, for the approximation of the solution X of (1.1) we will use the Low
Rank Cholesky Factor ADI (LRCF-ADI) algorithm (see [5] or [3]) which has
the following form:

Algorithm 1 (Low rank Cholesky factor ADI (LRCF-ADI))

INPUT: A, G, {p1, p2, . . . , pl}
OUTPUT: V = Vl ∈ C

m×sl, such that V V ∗ ≈ X.
1. W1 =

√
−2Re(p1) (A + p1I)−1G

2. V = W1

FOR: i = 2, 3, . . . , l
3. Wi =

√
Re(pi)/Re(pi−1) (Wi−1 − (pi + p̄i−1)(A + piI)−1Wi−1)

4. Vi = [Vi−1 ,Wi]
END

The l-th approximation Xl of the solution X can be written as

Xl =
l∑

j=1

WjW
∗
j . (2.4)

From (2.4) it follows that the trace of the l-th approximation Xl is equal to

tr(Xl) =
l∑

j=1

tr(WjW
∗
j ) =

l∑

j=1

tr(W ∗
j Wj) =

l∑

j=1

s∑

i=1

‖Wj(:, i)‖2 , (2.5)

where ‖ · ‖ represents a 2-norm.
From (2.5) and (2.3) it follows that the trace of the solution X can be

written as (this holds for {p1, . . . , pm} = σ(A))

tr(X) =
m∑

j=1

s∑

i=1

‖Wj(:, i)‖2 . (2.6)
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Using

‖Wj‖2

F =
s∑

i=1

‖Wj(:, i)‖2 ,

(2.5) can be written as

tr(Xl) =
l∑

j=1

‖Wj‖2

F , (2.7)

and similarly, (2.6) can be written as

tr(X) =
m∑

j=1

‖Wj‖2

F . (2.8)

From (2.7) and (2.8) it follows that

tr(X) − tr(Xl) =
m∑

j=l+1

‖Wj‖2

F . (2.9)

The main task in this section is to derive a bound for (2.9). Once we
obtain the bound for (2.9) we will be able to bound the relative error for the
solution of the Lyapunov equation (1.1) by simply using the inequality

‖X − Xl‖
‖X‖ ≤ tr(X) − tr(Xl)

µ1

, (2.10)

where µ1 ≥ µ2 ≥ . . . ≥ µm denote eigenvalues of the matrix X.
The above inequality follows from the fact that ‖WkW

∗
k ‖ ≤ tr(WkW

∗
k ),

which implies ‖X − Xl‖ ≤ tr(X) − tr(Xl).
Also, as it has been shown in [8] or [5], the left-hand side in (2.10) is the

upper bound for the eigenvalue decay, that is

µs l+1

µ1

≤ ‖X − Xl‖
‖X‖ ≤ tr(X) − tr(Xl)

µ1

, (2.11)

where s l < m.
The first of our results concerns a diagonalizable matrix A, thus let

A = SΛS−1; S ∈ R
m×m , Λ = diag{λ1, . . . λm} (2.12)

be the eigenvalue decomposition of the matrix A.
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If we write

Ĝ = S−1G =




g11 g12 . . . g1s

g21 g22 . . . g2s

...
...

...
...

gm1 gm2 . . . gms


 =




ĝ1

ĝ2

...
ĝm


 (2.13)

(ĝi denotes the i-th row of the matrix Ĝ), then the following theorem contains
the bound for (2.9).

Theorem 2.1 Let Xl be the l-th approximation obtained by Algorithm 1

with the set of ADI parameters corresponding to any subset of the exact eigen-
values of the matrix A (i.e. {p1, p2, . . . , pl} = {λk1

, λk2
, . . . , λkl

}). Then the
following bound holds:

tr(X) − tr(Xl) ≤ ‖S‖2

m∑

j=l+1

(−2Re(pj))
m∑

k=1

|σ(j, k)|2 · ‖ĝk‖2 , (2.14)

where

σ(1, k) =
1

λk + p1

, and σ(j, k) =
1

λk + pj

j−1∏

t=1

λk − p̄t

λk + pt

for j > 1 .

(2.15)

Proof. From (2.9) it follows that we have to bound ‖Wj‖2
F for j =

l + 1, . . . ,m. By Algorithm 1 we can write:

Wj =
√

Re(pj)/Re(pj−1)
(
I − (pj + p̄j−1)(A + pjI)−1

)
Wj−1 ,

Wj−1 =
√

Re(pj−1)/Re(pj−2)
(
I − (pj−1 + p̄j−2)(A + pj−1I)−1

)
Wj−2

· · ·
W2 =

√
Re(p2)/Re(p1)

(
I − (p2 + p̄1)(A + p2I)−1

)
W1 ,

W1 =
√
−2Re(p1) (A + p1I)−1G ,

where pj = λkj
is one of the exact eigenvalues of the matrix A. Together, the

above equalities give:

Wj =
√
−2 Re(pj)

(
I − (pj + p̄j−1)(A + pjI)−1

)
·
(
I − (pj−1 + p̄j−2)(A + pj−1I)−1

)
· · ·

· · ·
(
I − (p2 + p̄1)(A + p2I)−1

)
(A + p1I)−1G . (2.16)
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Now using the eigenvalue decomposition (2.12) it is easy to show that (2.16)
can be written as:

Wj =
√
−2 Re(pj) S ·

(
I − (pj + p̄j−1)(Λ + pjI)−1

)
·
(
I − (pj−1 + p̄j−2)(Λ + pj−1I)−1

)
· · ·

· · ·
(
I − (p2 + p̄1)(Λ + p2I)−1

)
(Λ + p1I)−1Ĝ ,

Note that the above equality contains j − 1 diagonal matrices of the form

(
I − (pk + p̄k−1)(Λ + pkI)−1

)
= diag

(
λi − p̄k−1

λi + pk

)

i

i = 1, . . . ,m , k = 2, . . . , j .

Thus, the matrix Wj has the following form:

Wj =
√
−2 Re(pj) S ·




σ(j, 1) · ĝ1

σ(j, 2) · ĝ2

...
σ(j,m) · ĝm


 ,

where σ(j, k) are defined as

σ(1, k) =
1

λk + p1

, and σ(j, k) =
1

λk + p1

j∏

t=2

λk − p̄t−1

λk + pt

for j > 1 .

Now it is easy to show that σ(j, k) defined above are the same as the ones
defined in (2.15).

Using the inequality ‖AB‖F ≤ ‖A‖‖B‖F we can write:

‖Wj‖2

F ≤ (−2 Re(pj)) ‖S‖2 ·
m∑

k=1

|σ(j, k)|2 · ‖ĝk‖2 , (2.17)

here we have used the fact that ‖ĝk‖2
F = ‖ĝk‖2 since ĝ is a row-vector.

Now bound (2.14) is obtained simply by summing all terms from the
right-hand side in (2.17) for j = l + 1, . . . ,m.

The above theorem can be generalized to any stable matrix A. For the
sake of simplicity, we will consider the matrix A whose Jordan blocks are at
most 2 × 2.

Let the Jordan canonical form of the matrix A be

A = SJS−1; S ∈ C
m×m , J = J1 ⊕ . . . ⊕ Jk0

, (2.18)
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where Ji ⊕ Jk stands for a direct sum of Ji and Jk and each Ji, i = 1, . . . , k0

corresponds to subspaces associated with the eigenvalue λi, with the following
structure

Ji = [λi] for i = 1, . . . , n0 ,

Ji =

[
λi 1
0 λi

]
, or Ji = λiI + N , for i = n0 + 1, . . . , k0 ,

where I is 2 × 2 identity matrix and

N =

[
0 1
0 0

]
, is nilpotent of order 2.

Let matrix

Ĝ = S−1G =




g11 g12 . . . g1s

g21 g22 . . . g2s

...
...

...
...

gk01 gk02 . . . gk0s


 =




ĝ1

ĝ2

...
ĝk0


 (2.19)

be partitioned according to the Jordan structure of the matrix A, that is for
i = 1, . . . , n0, ĝi denotes the i-th 1 × s, and for i = n0 + 1, . . . , k0, the i-th
2 × s, submatrix of the matrix Ĝ, respectively.

The following theorem contains the bound for the difference of traces
(2.9).

Theorem 2.2 Let Xl be the l-th approximation obtained by Algorithm 1

with the set of ADI parameters corresponding to any subset of exact eigen-
values of the matrix A (i.e. {p1, p2, . . . , pl} = {λk1

, λk2
, . . . , λkl

}). Then the
following bound holds:

tr(X) − tr(Xl) ≤ ‖S‖2

m∑

j=l+1

(−2Re(pj))

k0∑

k=1

‖η(j, k)‖2 · ‖ĝk‖2

F , (2.20)

where
η(j, k) = σ(j, k) for k = 1, . . . n0 , (2.21)

η(j, k) = (σ(j, k)I − µ(j, k) N)
(
I − (λk + p1)

−1N
)
∈ C

2×2 (2.22)

for k = n0 + 1, . . . k0 ,
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σ(1, k) =
1

λk + p1

, and σ(j, k) =
1

λk + pj

j−1∏

t=1

λk − p̄t

λk + pt

for j > 1 .

(2.23)
and for k = n0 + 1, . . . k0

µ(j, k) =

j∑

l=2

1

λk + p1

j∏

t=2

t6=l

λk − p̄t−1

λk + pt

pl + p̄l−1

(λk + pl)2
. (2.24)

Proof. The first part of the proof is similar to the first part of the proof
of Theorem 2.1. Thus, we continue from equality (2.16):

Wj =
√
−2 Re(pj)

(
I − (pj + p̄j−1)(A + pjI)−1

)
·
(
I − (pj−1 + p̄j−2)(A + pj−1I)−1

)
· · ·

· · ·
(
I − (p2 + p̄1)(A + p2I)−1

)
(A + p1I)−1G .

Now using the Jordan canonical form of the matrix A (2.18) it is easy to
show that the above equality can be written as:

Wj =
√
−2 Re(pj) S ·

(
I − (pj + p̄j−1)(J + pjI)−1

)
·
(
I − (pj−1 + p̄j−2)(J + pj−1I)−1

)
· · ·

· · ·
(
I − (p2 + p̄1)(J + p2I)−1

)
(J + p1I)−1Ĝ , (2.25)

Note that for n0 leading 1 × 1 Jordan blocks the structure of the matrix Wj

from (2.25) is equal to the structure of the matrix Wj from (2.16). Thus, we
will consider only n0 + 1, . . . , k0, 2 × 2 Jordan blocks.

Note that on the right-hand side of (2.25) we have a product of j − 1
block-diagonal matrices of the following form

I − (pk + p̄k−1)(J + pkI)−1 k = 2, . . . j . (2.26)

The i-th diagonal block is given by

I−(pk+p̄k−1)(Ji+pkI)−1 = I−(pk+p̄k−1) (λiI + N + pkI)−1 i = n0+1, . . . , k0 .

Now using

(λiI + N + pkI)−1 =
1

λi + pk

(
I − 1

λi + pk

N

)
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one can see that the i-th diagonal block of the k-th matrix (2.26) can be
written as

I − (pk + p̄k−1) (λiI + N + pkI)−1 =
λi − p̄k−1

λi + pk

I − pk + p̄k−1

(λi + pk)2
N . (2.27)

Multiplying together all matrices (2.27) for k = n0 + 1, . . . k0 we get the
block-diagonal matrix whose i-th block has the form:

(
λi − p̄j−1

λi + pj

I − pj + p̄j−1

(λi + pj)2
N

)
· · ·

(
λi − p̄1

λi + p2

I − p2 + p̄1

(λi + p2)2
N

)
·
(

1

λi + p1

I − 1

(λi + p1)2
N

)

Using the fact that N2 = 0, for j ≥ 2 the above expression can be written as




1

λi + p1

j∏

t=2

λi − p̄t−1

λi + pt

−
j∑

l=2

1

λi + p1

j∏

t=2

t6=l

λi − p̄t−1

λi + pt

pl + p̄l−1

(λi + pl)2


·

(
I − 1

λi + p1

N

)
.

Thus, one can see that the matrix Wj has the following form:

Wj =
√
−2 Re(pj) S ·




η(j, 1) · ĝ1

η(j, 2) · ĝ2

...
η(j, k0) · ĝk0


 ,

where η(j, k) is defined as in (2.21) and (2.24), and ĝ as in (2.19).
Similarly to the proof of Theorem 2.1 we have

‖Wj‖2

F ≤ (−2 Re(pj)) ‖S‖2 ·
k0∑

k=1

‖η(j, k) · ĝk‖2

F . (2.28)

Now bound (2.20) is obtained using the fact that ‖η(j, k)·ĝk‖F ≤ ‖η(j, k)‖·
‖ĝk‖F and then summing all inequalities for j = l + 1, . . . ,m.

Note that Theorem 2.2 is a proper generalization of Theorem 2.1, since
the assumption on diagonalizability of A implies n0 = m, that is all Ji are
one-dimensional blocks, which insures that bound (2.20) is equal to bound
(2.14).

We will now compare our bound with the bounds from [1] and [8]. For that
purpose, note that if we assume a certain order for eigenvalues, λ1, . . . , λm,
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of the matrix A, and if we choose ADI parameters p1, . . . , pm to be their
conjugate values in the same order, that is pi = λ̄i, for i = 1, . . . m, then

σ(j, k) =
1

λk + pj

j−1∏

t=1

λk − p̄t

λk + pt

= 0 for k < j , j > 1.

Then bound (2.14) has the following form

tr(X) − tr(Xl) ≤ ‖S‖2

m∑

j=l+1

(−2Re(pj))
m∑

k=j

σ(j, k)2 · ‖ĝk‖2 , (2.29)

where σ(1, k) are given by (2.15).
As it has been pointed out in [8], the suboptimal bound

‖X − Xl‖
‖X‖ ≤ κ2(S)

{
max

1≤k≤m

l∏

i

∣∣∣∣
λi − λk

λ̄i + λk

∣∣∣∣
2
}

(2.30)

is very similar to the approximate rate
δk

δ1

, since it holds [1, Theorem 3.1.]:

‖X − Xl‖ ≤ (m − l)2κ2(S)δk+1‖G‖2 , (2.31)

where

δ1 =
−1

2 Re(λ1)
and δj =

−1

2 Re(λj)

j−1∏

i=1

∣∣∣∣
λj − λi

λ̄j + λi

∣∣∣∣
2

, (2.32)

and the eigenvalues of the matrix A are taken according to the so-called
Cholesky ordering, that is, λ1 = argmax{−1/(2 Re(λ)) : λ ∈ λ(A)} and

λj = argmax

{
−1

2 Re(λ)

j−1∏

i=1

∣∣∣∣
λ − λi

λ̄ + λi

∣∣∣∣
2

: λ ∈ λ(A)\{λi : 1 ≤ i ≤ j − 1}
}

.

(2.33)
For comparison we will assume that A is diagonalizable, which means

that we will compare bounds (2.32) and (2.30) with our bound (2.14). The
following remark will show that bound (2.14) is sharper than bounds (2.32)
and (2.30).
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Remark 2.1 If we assume that eigenvalues of the matrix A, λ1, . . . , λm, are
sorted according to the Cholesky order (2.33), and if we choose the ADI shifts
as conjugate eigenvalues, that is pi = λ̄i, then we can write

−2Re(p1) · |σ(1, k)|2 ≤ δ1 for all k = 1, . . . ,m

and
−2Re(pj) · |σ(j, k)|2 ≤ δj for all k = 1, . . . ,m .

One can easily prove the above inequalities. Indeed,

−2Re(p1)·|σ(1, k)|2 = −2Re(λ1)·
(

1

|λk + p1|

)2

=
−2Re(λ1)

|(λk + λ̄1)|2
≤ −1

2Re(λ1)
≡ δ1 ,

for all k = 1, . . . ,m. Further, note that for pi = λ̄i, i = 1, . . . m expressions

−2Re(pj) · |σ(j, k)|2 =
−2Re(λj)

|(λk + λ̄j)|2
·

j−1∏

t=1

∣∣∣∣
λk − λt

λk + λ̄t

∣∣∣∣
2

are equal to zero for k = 1, . . . , j − 1 (as we have pointed out earlier for such
a choice of ADI parameters σ(j, k) = 0 for k < j). Thus, we can write

−2Re(pj) · |σ(j, k)|2 ≤ −1

2Re(λj)
·

j−1∏

t=1

∣∣∣∣
λk − λt

λk + λ̄t

∣∣∣∣
2

≤ δj for k = j, . . . ,m .

For this choice of eigenvalue ordering (2.33), it can be shown that δ1 ≥
. . . ≥ δm > 0 (for details see [1]), where δk is defined in (2.32).

Now, from (2.14) it follows

tr(X) − tr(Xl) ≤ ‖S‖2

m∑

j=l+1

(−2Re(pj))
m∑

k=1

|σ(j, k)|2 · ‖ĝk‖2

≤ ‖S‖2‖S−1‖2δl+1

m∑

j=l+1

m∑

k=1

‖gk‖2

= (m − l) κ(S)2 δl+1 ‖G‖2

F

≤ m(m − l) κ(S)2 δl+1 ‖G‖2 .

The last bound is similar to the bound from [1, Theorem 3.1.]. Note that
bound (2.14) is sharper than (2.31).
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In spite of the fact that our bound (2.20) is more general and sharper than
existing bounds, this is not its main advantage. As we will see in the next
section, the main advantage of the bounds (2.14) and (2.20) is the fact that
these bounds include the influence of the right-hand side on the eigenvalue
decay. In the next section we will consider this influence in some detail.

2.1 The influence of the right-hand side on the eigen-

value decay rate of the solution of Lyapunov equa-

tion

As it has been already pointed out, in this section we will consider the in-
fluence of the right-hand side on the eigenvalue decay rate of the solution of
Lyapunov equation (1.1)

AX + XAT = −GGT .

Let µ1, . . . , µm be the eigenvalues of the solution X and let sl < m. Then
from (2.11) and (2.20) it follows

µs l+1

µ1

≤ ‖S‖2

m∑

j=l+1

(−2Re(pj))

k0∑

k=1

η(j, k)2

µ1

· ‖ĝk‖2

F , (2.34)

where η is defined by (2.22) and ĝk by (2.19).
Now, one can easily see that the right-hand side of (2.34) strongly depends

on ‖ĝk‖2
F , k = 1, . . . , k0 (the structure of the matrix Ĝ is important). For

example, if Ĝ has a structure such that

‖ĝ1‖F � ‖ĝ2‖F ≈ ‖ĝ3‖F ≈ · · · ≈ ‖ĝk0
‖F ≈

√
ε

then we can choose p1 and p2 such that η(j, 1) = 0 for j > 2. If ‖S‖, Re(pj)
and the rest of η(j, k)’s have modest magnitudes, then from (2.34) we have

µs l+1

µ1

≤ O(ε) .

Thus we can conclude that, although the right-hand side of bound (2.20)
depends on the magnitude of numbers η(j, k) defined in (2.22), it also strongly
depends on the structure of the eigenvector matrix S defined in (2.18) and

the norms of the rows of the matrix Ĝ defined in (2.19).
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To confirm our statements we will consider a well known example with
no eigen-decay case considered in [1]. As it has been pointed out in [1], these
no eigen-decay cases are related to all-pass systems. For example, if we take
the Lyapunov equation

AX + XAT = −bbT , (2.35)

where A = T − bbT /2, T = −T T , and b is a vector ensuring the stability
of A, then it is obvious that the solution of the above Lyapunov equation is
X = I, with no eigen-decay at all.

A slight change of the vector b may cause a ”nice“ eigen-decay of the
solution of a new Lyapunov equation

AX + XAT = −b̃̃bT , (2.36)

with the same matrix A.
To illustrate this, we have constructed a small example which shows de-

pendence of the eigen-decay rate of the solution and the angle between vectors
b̃ and b from (2.36) and (2.35), respectively. Vectors b̃ are constructed from

b such that all components of b̃ and b are equal excluding the last two. The
last two components of b̃ were set to zero. For the measure of the eigen-decay
rate we use the ratio tr(X)/‖X‖, which indicates that if tr(X)/‖X‖ is close to
1, then we have a strong eigen-decay in contrast to the case when tr(X)/‖X‖
is close to matrix dimension.

We have considered 16 randomly generated systems of dimension 400.
Table 1 shows all 16 results. The results point out that although the angles
between vectors b̃ and b are small (∼ 3.5◦), eigen-decay takes place.

ϕ = ∠(̃b, b) 0.0586 0.0715 0.0477 0.0529 0.0858 0.0540 0.0906 0.0748
tr(X)/‖X‖ 19.6502 2.3113 4.7841 22.7262 19.7142 4.8621 18.4565 6.0325

ϕ = ∠(̃b, b) 0.0801 0.0773 0.0714 0.0896 0.0978 0.0199 0.0683 0.0849
tr(X)/‖X‖ 31.4756 10.5892 2.2508 6.6712 13.2327 30.8580 10.8526 2.4981

Table 1: The eigen-decay case

This example shows the importance of the structure of the right-hand
side for eigen-decay rate phenomena for solutions of Lyapunov equations
with small rank right-hand sides.
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The following figure shows eigenvalues of X (with a logaritmic vertical
axis) for the best and the worst case of the eigen-decay rate shown in Table
1.

Figure 1: Eigenvalues of X

The next section contains our second result about a suboptimal choice of
ADI parameters based on error bounds (2.14) and (2.20).

3 Suboptimal set of ADI parameters

In this section we will describe one possible application of Theorem 2.1 con-
cerning a suboptimal choice of ADI parameters.

It is well known that the efficiency of the ADI method strongly depends
on the selection of ADI parameters. Bounds (2.14) and (2.20) point out that
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the structure of the right-hand side can be very important for the selection
of a proper set of ADI parameters.

Our algorithm is inspired by the following example.

Example 3.1 Consider Lyapunov equation

AX + XAT = −GGT ,

where A has a block structure

A = A1 ⊕ . . . ⊕ An , Ai ∈ R
2×2 , for i = 1, . . . n.

Let, say G =
[
I2 02 . . . 02

]T
, where I2 and 02 denote, a 2×2 identity and

a zero matrix, respectively.
Since A has the block structure, then the matrix of eigenvectors S has a

similar block structure too. This further means that only the first two rows
of the matrix Ĝ = S−1G will be non-zero rows while the rest of the rows will
be zero rows (i.e. ‖ĝk‖ = 0 for k = 3, . . . ,m). Now from (2.14) it follows

‖X − Xl‖
‖X‖ ≤ ‖S‖2

µ1

·
m∑

j=l+1

(−2Re(pj))
2∑

k=1

σ(j, k)2 ‖ĝk‖2 ,

where

σ(j, k) =
1

λk + pj

j−1∏

t=1

λk − p̄t

λk + pt

Now, if we choose p1 = λ̄1 and p2 = λ̄2 (note that λ1 and λ2 are eigen-
values of the matrix A1), then σ(j, 1) = σ(j, 2) = 0, for j ≥ 2, which insures
that the solution X2 obtained by the LRCF-ADI algorithm with parameters
p1 and p2 will be equal to the exact solution X, that is

‖X − X2‖
‖X‖ ≤ ‖S‖2

µ1

·
m∑

j=3

(−2Re(pj))
2∑

k=1

σ(j, k)2 ‖ĝk‖2 = 0 .

As we have seen in the last example, which considers the so-called “modal
damping” case, the optimal set of ADI parameters {p1, . . . , pl} is determined
by the structure of the matrix GGT , since A was given in a block-diagonal
form. Thus for the determination of a suboptimal set of ADI parameters in
a general case (with a general stable A), we propose the following algorithm:

Algorithm 2 (ADI-parameters )
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1. Find the indices of 1′s on the right-hand side (i.e. find positions of ones
in the matrix GGT ).

2. Find the corresponding submatrix of A using this indexes.

3. Take a “little bit bigger block” Ablock (which depends on a particular
problem) which includes a submatrix chosen in the previous step.

4. The eigenvalues of the chosen matrix Ablock are ADI parameters (that
is, p1, . . . , pl ∈ σ(Ablock)).

Figure 2. shows how we form the matrix Ablock.

Figure 2: Choosing Ablock

Here we have to emphasize two things:
1. when GGT is not a projector (which is usual in our applications), one has
to be able to predict positions of ones in the matrix GGT without forming the
matrix GGT explicitly. For example, if G is close to some invariant subspace
of A, then such a prediction will be possible.
2. generally it is not necessary for GGT to have only ones and zeros, it is
enough that one finds positions of the entries with the largest magnitude and
then proceeds with steps 2.–4. of Algorithm 2 (ADI-parameters).
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Since we do not have a close theory which will insure that this choice of
ADI parameters is (sub)optimal in any sense, we will compare the perfor-
mance of the LRCF-ADI algorithm with a set of parameters generated by
our algorithm with those generated by the algorithm proposed by Penzl in
[5] and [7]. Penzl’s algorithm for selection of ADI parameters is based on the
following two ideas. First, we generate a discrete set, which “approximates”
the spectrum, which is done by a pair of Arnoldi processes (we calculate the
set of Ritz values). Then we choose a set of shift parameters which is a subset
of the set of Ritz values by a heuristic that delivers a suboptimal set of ADI
shifts.

In all the experiments we will use the following notation:

• TrPenzl denotes the trace of the solution of Lyapunov equation (1.1)
obtained by LRCF-ADI generated by the set of ADI shifts generated
by the algorithm proposed by T. Penzl [5].

• Trnew denotes the trace of the solution of Lyapunov equation (1.1)
obtained by LRCF-ADI generated by the set of ADI shifts generated
by the new algorithm ADI-parameters

• trace(X) denotes the trace of the solution of Lyapunov equation (1.1)
obtained by the Bartels–Stewart algorithm (implemented in MatLab
as lyap function).

Application of Theorem 2.2 and the new algorithm for ADI-parameters

shall be illustrated first on a mechanical system described in [13].
We consider the following Lyapunov equation

AX + XAT = −GGT , (3.37)

where

A = A0 − ddT , A0 = Ω1 ⊕ . . . ⊕ Ωn , Ωi =

[
0 ωi

−ωi 0

]
,

and d is an m dimensional vector. As it has been shown in [13], d can be
chosen as to correspond to the system from (Fig. 3) with ωi as undamped
frequencies and v > 0 a damping constant of the damper applied to the mass
m1.

The system is described by the differential equation

Mẍ + Cẋ + Kx = 0 (3.38)
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Figure 3: The n-mass oscillator

where M,C,K (called mass, damping, stiffness matrix, respectively) have
the following form:

M = diag(m1,m2, . . . ,mn) ,

K =




k1 −k1

−k1 k1 + k2 −k2

. . . . . . . . .

−kn−2 kn−2 + kn−1 −kn−1

−kn−1 kn−1 + kn




, C =




v 0 . . . 0
0 0 . . .

......
. . .

...
0 0 . . . 0


 .

In [13] it has been shown that for any choice of eigenvalues λ1, . . . , λm in
the open left half plane (symmetric with respect to the real axis) there exist
unique matrices M , C and K of the above form, such that λi are eigenvalues
of the corresponding quadratic eigenvalue problem

(λ2M + λC + K)x = 0 .

We first illustrate the application of Theorem 2.2 on the following simple
example. Using the algorithm from [13] we will construct matrix A whose
eigenvalues are λ1 = λ2 = −1 and λ3 = λ4 = −2. Let the matrix As

be obtained from A by a perfect shuffle permutation and let As = SJS−1,
where

S =




−0.3859 −0.3939 −1.4972 −3.0098
0.68723 0.0141 5.3325 8.0535
−0.5925 0.2097 −6.1853 −8.1836
0.1664 −0.2252 3.4734 2.8589




and

J = J1 ⊕ J2 , J1 =

[
−1 1
0 −1

]
, J2 =

[
−2 1
0 −2

]
.
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We will consider Lyapunov equation (3.37) where the matrix G from the
right-hand side has rank 1 and the 1 is set at the position G(1, 1) = 1.

From (2.19) it follows that

Ĝ = S−1G =
[
11.4354 −6.9468 −0.4505 −0.6654

]T
.

Using (2.20) one can see that the best choice for ADI parameters will be the
first two eigenvalues. Since, in general, we do not know the exact eigenvalues
λ1 and λ2 we can apply the algorithm ADI-parameters for determination
of ADI-parameters p1 and p2. From this algorithm it follows that p1 and
p2 will be the eigenvalues of the matrix Ablock = As(1 : 2, 1 : 2) (p1 =
−0.40859 + 0.38522 i, p2 = −0.40859 − 0.38522 i). If we assume that the
damping constant is v = 1, then we have the following result:

trace(X) = 2.61022, T rnew = 2.57693

(Trnew is obtained by LRCF-ADI with p1 and p2 as shifts).
It should be pointed out, although our parameters are far away from

the exact eigenvalues, the corresponding approximation is satisfactory. On
the other hand, if we set the first two exact eigenvalues as ADI parameters
p1 = −1 and p2 = −1, then the approximation which gives LRCF-ADI with
these parameters is

Tr = 2.50127

which is obviously inferior to Trnew.
A different choice of ADI parameters p1 = −1 and p2 = −2 (which

will be the choice of Penzl’s algorithm) will produce a less accurate result
TrPenzl = 2.24089.

The above example was used as an illustration for a possible application of
Theorem 2.2 and new algorithm ADI-parameters for deriving a suboptimal
set of ADI parameters.

Further, we will compare performance of the LRCF-ADI algorithm with
two suboptimal sets of ADI parameters on the same mechanical system with
larger dimension.

Let n = 100 be a simple dimension of system (3.38) and let ω1 = . . . =
ωn = 1. Let the vector d be constructed according to the algorithm from
[13].

We will consider Lyapunov equation (3.37) where the matrix G from the
right-hand side will have rank 2s = 10 and the ones will be set at positions
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G(41 : 40 + s, 1 : s) = Is G(n + 41 : n + 40 + s, s + 1 : 2s) = Is. If we assume
that the damping constant v = 1, then we have the following result:

trace(X) = 1.2320e+003, T rPenzl = 1.4783e+002, T rnew = 1.2075e+003

where TrPenzl is derived by LRCF-ADI generated by 70 ADI shifts obtained
by the algorithm proposed by T. Penzl [5].

The trace Trnew was derived by LRCF-ADI generated by 40 ADI shifts
obtained by the new algorithm ADI-parameters for deriving a suboptimal
set of ADI parameters. Note that after a perfect shuffle permutation the ones
on the right-hand side will be at positions 81, 82, . . . , 90 (positions of 1s on
the diagonal of P T GGT P , where P denotes the perfect shuffle permutation),
thus the matrix Ablock was chosen as:

Ablock = As(71 : 110, 71 : 110) .

Note that the above example is the worst possible case because all ma-
trices have the Jordan structure, which excludes usage of results for diagoal-
izable matrices. On the other hand, although our theory does not cover all
possible cases, the above example shows that our choice of ADI parameters
can be optimal in a certain sense.

The next example considers a 2-D convection-diffusion model on a square
region (for example see [8]) and in contrast to the mechanical system from
the last example, the right-hand sides in Lyapunov equation do not fit in our
theory (Algorithm 2 (ADI-parameters )). Anyway the results obtained
by the LRCF-ADI method generated by the set of ADI parameters obtained
by the new algorithm ADI-parameters are quite satisfactory.

Example 3.2 Again we try to find the trace of the solution of Lyapunov
equation (3.37) where the matrix A has the following form:

A = −1/h2




A1 −I−I A1 −I
. . . . . . . . .

−I A1 −I−I A1




n×n

, where A1 =




4 1 − h
1 + h 4 1 − h

. . . . . . . . .
1 + h 4 1 − h

1 + h 4




√
n×√

,

and h = a/(
√

n + 1). We will take n = 256, a = 10 and rank(G) = 20.
For the matrix on the right-hand side we will take two different cases

1. G(1 : 10, 1 : 10) = I10 and G(129 : 138, 11 : 20) = I10,
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2. G(41 : 50, 1 : 10) = I10 and G(169 : 178, 11 : 20) = I10

and in both cases we have the following results

1.
| trace(X) − TrPenzl |

trace(X)
= 1.8e − 014 ,

| trace(X) − Trnew |
trace(X)

= 1.3e − 004 ,

2.
| trace(X) − TrPenzl |

trace(X)
= 1.6e − 014 ,

| trace(X) − Trnew |
trace(X)

= 3.4e − 003 .

where TrPenzl is derived by LRCF-ADI generated by 40 ADI shifts obtained
by the algorithm proposed by T. Penzl [5].

The trace Trnew is derived by LRCF-ADI generated by 40 ADI shifts
obtained by a new algorithm where the matrix Ablock was chosen as:

1. Ablock = As(1 : 40, 1 : 40)

2. Ablock = As(71 : 110, 71 : 110)

respectively.
Note that in both cases the trace calculated by LRCF-ADI using the ADI

parameters generated by the new algorithm ADI-parameters is inferior to
the one obtained by ADI parameters obtained by the algorithm proposed by
Penzl [5].

The reason for this lies in the structure of the matrix Ĝ. Fig. 4 shows the
row norms of the matrix Ĝ. As one can see from the figure, most of the rows
of Ĝ have a similar norm, which means that Theorem 2.1 does not ensure a
fast decay. Anyhow, the obtained traces contain 3-4 exact digits.

In the last example we will again consider mechanical system with three
rows of masses connected with springs. The system is shown in Figure 5.

Example 3.3 The mechanical system from Figure 5 is differential equation
(3.38) where M,C,K now have the following form

M = diag(M11,M22,M33,m0) Mii = diag(mi, . . . mi) ,

K =




K11 −κ1

K22 −κ2

K33 −κ3

−κT
1 −κT

2 −κT
3 k1+k2+k3+k0


 , Kii = ki




2 −1−1 2 −1
. . . . . . . . .

−1 2 −1−1 2


 ,
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Figure 4: Row norms of Ĝ. No decay expected.

and κi =
[
0 . . . 0 ki

]T
, Kii ∈ R

n×n and κi ∈ R
n×1, for i = 1, 2, 3.

C ≡ Cu + Cv = Cu + v1e1e
T
1 + v2ene

T
n + v3e2n+1e

T
2n+1

Using the eigenvalue decomposition

ΦT KΦ = Ω2 , ΦT MΦ = I ,

where Ω = diag(ω1, . . . , ωn) , ω1 < . . . < ωn and setting

y1 = Ω Φ−1x y2 = Φ−1ẋ ,

(3.38) can be written as
ẏ = Ay , (3.39)

y =

[
y1

y2

]
, A =




0 Ω

−Ω −ΦT DΦ


 , (3.40)

Note that M , C and K are matrices of order 3n + 1. We will set n = 50,
Cu = 0.02 Ω.
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Figure 5: The mechanical system

There is a large number of papers which consider the problem of optimiz-
ing the damping matrix C. For example, in [12],[13] the one–dimensional
damping has been considered, in [11] and [2] a general positive semidefi-
nite damping has been considered, while [10] additionally assumes that all
dampers have the same viscosity. In [4] and [2] among the other results the
global minimum for positive definite damping has been presented.

In all mentioned papers one has to solve the following Lyapunov equation

AX + XAT = −GGT (3.41)

For this mechanical system we have performed a set of experiments using
the following parameters. Let m2 = k2 = 2, m3 = k3 = 4 and v1 = 0.1,
v2 = 5 and v3 = 0.01 be fixed and let m0,m1, k0, k1 be chosen such that

m0, k0 ∈ {10−3, 10−2, 10−1, 1, 10, 102} and m1, k1 ∈ {10−2, 10−1, 1, 10, 102, 103} .

This means that we have 1296 different configurations defined by different
sets {m0,m1,m2,m3} and {k0, k1, k2, k3}.

For each of these configurations we have derived the trace of the solution
of Lyapunov equation (3.41) with two different matrices G on the right-hand
side.

1. G(1 : 10, 1 : 10) = I10 , G(152 : 161, 11 : 20) = I10, and

2. G(51 : 60, 1 : 10) = I10 , G(202 : 211, 11 : 20) = I10 .
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In all cases we have used 50 ADI shifts generated by the algorithm pro-
posed by T. Penzl [5] for TrPenzl, while in the other case we have generated
two different sets of 50 ADI parameters using a new algorithm, that is

1. p = eig(As(1 : 50, 1 : 50)) ,

2. p = eig(As(81 : 130, 81 : 130)) ,

where As denotes the matrix obtained from A by the perfect shuffle permuta-
tion.

For all of 1296 different configurations in case 1. we have the following
results:

| trace(X) − TrPenzl |
TrPenzl

∈
(
1.5 · 10−6, 0.02

)

| trace(X) − Trnew |
Trnew

∈
(
8 · 10−7, 0.001

)

while for all of 1296 different configurations in the case 2. the results are:

| trace(X) − TrPenzl |
TrPenzl

∈ (32, 160)

| trace(X) − Trnew |
Trnew

∈ (0.001, 0.01)

In both cases one can see that results obtained by the LRCF-ADI gener-
ated by the new set of ADI shifts are better than the one generated by shifts
proposed by T. Penzl [5]. The reason for this lies again in the structure of the

matrix Ĝ. Fig. 6 shows the row norms of the matrix Ĝ for one of the exam-
ples from case 2. As one can see from the figure, here Theorem 2.1 ensures
a fast decay. As it is already shown, the results can be obtained efficiently.
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