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1. Introduction. Let H ∈ Cn×n be a Hermitian matrix, X ∈ Cn×m be an
orthonormal matrix, and

M = X∗HX, R = HX −XM, X = R(X). (1.1)

Furthermore, let

λ1 ≥ . . . ≥ λn and µ1 ≥ . . . ≥ µm, (1.2)

be the eigenvalues of H and M , respectively.
In this paper we present a linear and quadratic residual bound for indefinite

possible singular Hermitian matrix.
In [8] has been presented the following linear residual bound for non-singular

indefinite Hermitian matrices:
Theorem 1.1. Let H = LJL∗, where L and J are non-singular and J is diagonal

with ±1 on its diagonal. Let

YL = JL∗X , ZL = L−1X ,

and let ψ be the maximal acute principal angle between YL and ZL. There are at least
m eigenvalues λik

, k = 1, . . . ,m of H for which

|λik
− µk|

|λik
|

≤ κ(V )
sinψ

1 − sinψ
k = 1, . . . ,m, (1.3)

provided that right hand side in (1.3) is less than one. Here V is J-unitary matrix
which diagonalizes the pair (L∗L, J), that is, V ∗L∗LV = |Λ| and V ∗JV = J .

We are going to bound |λik
−µk|/|µik

| provided that the matrix H can be semidef-
inite. Our bounds are proper generalization of linear residual bounds for positive
semidefinite matrices presented in [1].

On the other hand, all exited quadratic residual bounds for general Hermitian
matrices belong to classical perturbation theory.
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Let σ(H) denote the spectra of H. The first result is due to Sun [5].
Theorem 1.2 (Sun). Let Y = R(Y ) be an invariant subspace of H with or-

thonormal basis Y ∈ Cn×m. Let λj1 ≥ . . . ≥ λjm
be the eigenvalues of Y ∗HY , and

ΛY = diag(λj1 , . . . , λjm
), ΛX = diag(µ1, . . . , µm). If for some α, β ∈ R and δ0 > 0,

σ(M) ⊂ [α, β], σ(H) \ σ(Y ∗HY ) ⊂ (−∞, α− δ0] ∪ [β + δ0,+∞), (or vice versa) and
if ρ ≡ ‖R‖2/δ0 < 1, then for any unitary invariant norm ‖ · ‖,

‖ΛY − ΛX ‖ ≤
1√

1 − ρ2
·
‖R‖2‖R‖

δ0
.

The second result is due to Mathias [4], and this result is generalization of result
obtained by Theorem 1.2.

Let

H =

[
A R0

R∗
0 B

]
and H̃ =

[
A 0
0 B

]

be Hermitian matrices. For measure of separation between eigenvalues λk, k =
1, . . . , n of the matrix H from eigenvalues µi(B) of the matrix B we define

δk ≡ min
i=1,...,n

|λk − µi(B)|.

For the measure of separation between eigenvalues λ̃k, k = 1, . . . , n of the matrix H̃
from eigenvalues µi(B) of the matrix B we use

δ̃k ≡ min
i=1,...,n

|λ̃k − µi(B)|.

Theorem 1.3. [4, Theorem 1] If λk /∈ σ(B), then

|λk − λ̃k| ≤ δ−1
k ‖R0‖

2,

while if λ̃k /∈ σ(B), then

|λk − λ̃k| ≤ δ̃−1
k ‖R0‖

2.

Similarly as in the linear case our quadratic bound is a proper generalization of
the quadratic residual bound for positive semidefinite matrices presented in [1].

2. Linear residual bound. In this section we present the relative residual
bounds for indefinite, possible singular, Hermitian matrices. First we will separate
null subspace of the matrix H from the rest of the subspaces.

Let H = GJG∗ be an indefinite Hermitian matrix, and let X be m−dimensional
subspace of Cn. Let X =

[
X1 X2

]
and X⊥ =

[
X⊥,1 X⊥,2

]
be orthonormal bases

of X , X⊥, respectively, such that G∗X1 = 0 and G∗X⊥,2 = 0 and

M =
[
X1 X2

]∗
H

[
X1 X2

]
=

[
0

Λ1

]
m− rM
rM

, (2.1)

N =
[
X⊥,1 X⊥,2

]∗
H

[
X⊥,1 X⊥,2

]
=

[
Λ2

0

]
rN
n−m− rM

, (2.2)
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where rM = rank (M), rN = rank (N).
Now we can write

[
X X⊥

]∗
H

[
X X⊥

]
=




0

Ĥ
0




m− rM
rM + rN
n−m− rN

,

where

Ĥ =

[
Λ1 K∗

K Λ2

]
rM
rN

. (2.3)

The following theorem contains relative perturbation bound for the eigenvalues
of H and Rayleigh-Ritz approximations of eigenvalues of H, that is, eigenvalues of
M , where M is given by (2.1) .

Theorem 2.1. Let H = GJG∗, be indefinite Hermitian matrix (possibly singu-
lar), where J is diagonal matrix with ±1 on its diagonal. Let X and X⊥ be orthonor-

mal matrices as in (2.1) and (2.2), if we define KS = |Λ2|
− 1

2K|Λ1|
− 1

2 then

|λik
− µm−rM+k|

|µm−rM+k|
≤ ‖KS‖, k = 1, . . . , rM , (2.4)

µk = λjk
= 0, k = 1, . . . ,m− rM ,

|λik
− µm+k|

|µm+k|
≤ ‖KS‖, k = 1, . . . , rN , (2.5)

µk = λjk
= 0, k = m+ rN + 1, . . . , n,

Proof. Let Ĥ0 be diagonal matrix

Ĥ0 =

[
Λ1 0
0 Λ2

]
rM
rN

, (2.6)

where Λ1 and Λ2 are defined by (2.1) and (2.2). Then we can write Ĥ0 = D∗AD,
where

D =

[
|Λ1|

1/2 0
0 |Λ2|

1/2

]
, A =

[
J1 0
0 J2

]
.

Here J1 and J2 are diagonal matrices with signs of eigenvalues of Λ1 and Λ2, respec-
tively.

Note that Ĥ from (2.3) can be considered as a perturbation of Ĥ0. Indeed, since

Ĥ = D∗D−∗ĤD−1D,

we have Ĥ = D∗(A+ δA)D, where

δA =

[
0 K∗

S

KS 0

]
.
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By a result of Veselić and Slapničar [9] we know that

1 − η ≤
λ̃i

λi
≤ 1 + η

where η = ηH = ‖δA‖‖Â−1‖, which imply

|λik
− µm−rM+k|

|µm−rM+k|
≤ ‖Â−1‖‖δA‖, k = 1, . . . , rM .

Since ‖Â−1‖‖δA‖ = ‖KS‖, we obtained the first part of (2.4). Similarly holds for
(2.5).

The bound obtained by this theorem is a proper generalization of [1, Theorem
1.1] to indefinite singular Hermitian matrices. Indeed, in the case when J = I that
is, for H = GG∗ positive semidefinite, ‖KS‖ = sin ∠

(
YG,U

⊥
G

)
, where YG = G∗X ,

UG = G∗X⊥ and angle function is defined by (see [10])

sin∠
(
YG,U

⊥
G

)
= min

{
‖PUG

PYG
‖, ‖PU⊥

G

PY⊥

G

‖
}
,

where PM is orthogonal projector onto M. Since, for the indefinite Hermitian matrix
H = GJG∗ we can not express ‖KS‖ in the terms of sine of canonical angles, in the
following corollary we present the upper bound for ‖KS‖ which contains such a sine.

Corollary 2.2. Let H = GJG∗, J , X and X⊥ be as in Theorem 2.1. If
G∗X1 = 0 and G∗X⊥,2 = 0 and if we set WG = R(JG∗X⊥) YG = R(G∗X), then

‖KS‖ ≤ ‖U‖‖Y ‖ sinφ, (2.7)

where U = G∗X⊥,1|Λ2|
− 1

2 , Y = G∗X2|Λ1|
− 1

2 and sinφ is defined by

sinφ = sin∠
(
YG,W

⊥
G

)
= min

{
‖PWG

PYG
‖, ‖PW⊥

G

PY⊥

G

‖
}
. (2.8)

Proof. From K = X⊥,1HX2 and the definition of KS , we have

KS = |Λ2|
− 1

2K|Λ1|
− 1

2 = |Λ2|
− 1

2X∗
⊥,1HX2|Λ1|

− 1

2 = |Λ2|
− 1

2X∗
⊥,1GJG

∗X2|Λ1|
− 1

2

=
(
G∗X⊥,1|Λ2|

− 1

2

)∗

J
(
G∗X2|Λ1|

− 1

2

)
= U∗JY = W ∗Y,

where W = JU . Note that

Y ∗JY = |Λ1|
− 1

2X∗
2GJG

∗X2|Λ1|
− 1

2

= |Λ1|
− 1

2X∗
2HX2|Λ1|

− 1

2 = |Λ1|
− 1

2 Λ1|Λ1|
− 1

2 = J1,

W ∗JW = |Λ2|
− 1

2X∗
⊥,1GJG

∗X⊥,1|Λ2|
− 1

2

= |Λ2|
− 1

2X∗
⊥,1HX⊥,1|Λ2|

− 1

2 = |Λ2|
− 1

2 Λ2|Λ2|
− 1

2 = J2.

This shows that W and Y have J-orthogonal columns. Further, from

R(Y ) = R
(
G∗X2|Λ1|

− 1

2

)
= R (G∗X2) ⊂ R (G∗X) = YG,

R(W ) = R
(
JG∗X⊥,1|Λ2|

− 1

2

)
= R (JG∗X⊥) ⊂ R (JG∗X) = WG,
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and from G∗X1 = 0 and G∗X⊥,2 = 0 it follows that R(Y ) = YG and R(W ) = WG.
Finally, let W = QWRW and Y = QY RY be QR-decompositions of W and Y ,
respectively. Then

‖KS‖ = ‖W ∗Y ‖ ≤ ‖R∗
W ‖‖RY ‖‖Q∗

WQY ‖. (2.9)

The columns of QW and QY form orthonormal basis for WG and YG, respectively.
Drmač and Hari have shown in proof of [1, Theorem 1.1], that ‖Q∗

WQY ‖ = sinφ.
Now, using this and the fact that

‖R∗
W ‖ = ‖U‖, ‖RY ‖ = ‖Y ‖,

from (2.9) follows (2.7).
Inserting (2.7) into (2.4) and (2.5) we obtain the bound which is a proper general-

ization of [1, Theorem 1.1] to indefinite Hermitian matrices, since in semidefinite case
(J = I) this bound is equal to sinφ, and W ≡ U and Y have orthonormal columns.

Note that in the positive definite case the angle function ∠(YG,ZG) defined by
(2.8) does not depend on G but only on H (see [1]). However, in indefinite case this
is not true in general. The dependence of the angle function ∠(YG,ZG) on the factor
G, where H = GJG∗, for a nonsingular indefinite matrix H, has been considered in
[8]. Now we will present a similar result for the indefinite possible singular matrix H.
Let

H = G1JG
∗
1 = G2JG

∗
2 (2.10)

be decompositions of the matrix H, i = 1, 2, and let Wi = QWi
RWi

and Yi = QYi
RYi

be QR decompositions of Wi and Yi respectively, where Wi and Yi are defined as in
the proof of the Corollary 2.2 (Wi and Yi corresponds with Gi) for i = 1, 2. Note that
(2.9) can be written as ‖KS‖ = ‖W ∗

i Yi‖, i = 1, 2. Now using this equalities we can
write the simple inequalities

sinφ2 = ‖R−∗
W2
R∗

W2
Q∗

W2
QY2

RY2
R−1

Y2
‖ ≤ ‖R−∗

W2
‖ ‖R−1

Y2
‖‖KS‖

≤ ‖R−∗
W2

‖ ‖R−1
Y2

‖ ‖RW1
‖ ‖RY1

‖ sinφ1

and similarly

sinφ1 ≤ ‖R−∗
W1

‖ ‖R−1
Y1

‖ ‖RW2
‖ ‖RY2

‖ sinφ2 .

Now, from the above inequalities we can write the following bound

‖U †
1‖ ‖Y

†
1 ‖ ‖U2‖ ‖Y2‖ ≤

sinφ2

sinφ1
≤ ‖U †

2‖ ‖Y
†
2 ‖ ‖U1‖ ‖Y1‖ , (2.11)

where we have use the fact that ‖R−∗
Wi

‖ = ‖U †
i ‖ and ‖R−∗

Yi
‖ = ‖Y †

i ‖, i = 1, 2. Here †
denotes the generalized inverse.

Note that bound (2.11) depends on a magnitude of the numbers which are similar
to the condition numbers of the matrices Ui and Yi (condition number of the matrix
U is defined as ‖U †‖ ‖U‖). The classes of so called “well-behaved matrices” for which
exist useful bounds for conditions of Ui and Yi have been considered in [6]. This class
include matrices such as scaled diagonal dominant matrices, block scaled diagonally
dominant (BSDD) matrices and quasi-definite matrices. Details about these bounds
can be found in e.g. [7, Section 3.1] and [6].
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3. Quadratic residual bound. In this section we will present quadratic relative
residual bound for the eigenvalues of an indefinite singular Hermitian matrix and
compare it with results from classical perturbation theory.

The main result of this section is a proper generalization of Drmač and Hari’s
Theorem 2.1 from [1], to indefinite, possible singular Hermitian matrices.

In the following theorem σmin(·) denotes the smallest singular value of a matrix.
We will use the same notation as in Theorem 2.1. For a given nonzero eigenvalue λ
of H we shall choose the bases X and X⊥ such that

Λ1 = Ξλ ⊕ Ξ̂λ, Λ2 = Ωλ ⊕ Ω̂λ, (3.1)

where the diagonals of Ξλ and Ωλ approximate λ in the sense of Theorem 2.1.
Let Λ1 and Λ2 be decomposed as

Λ1 =

[
|Ξλ|

1/2 0

0 |Ξ̂λ|
1/2

] [
J11 0
0 J22

] [
|Ξλ|

1/2 0

0 |Ξ̂λ|
1/2

]
, (3.2)

Λ2 =

[
|Ωλ|

1/2 0

0 |Ω̂λ|
1/2

] [
J̄11 0
0 J̄22

] [
|Ωλ|

1/2 0

0 |Ω̂λ|
1/2

]
, (3.3)

where J11, J22 J̄11, J̄22 are diagonal matrices with ±1 on the diagonal. We write
J = J11 ⊕ J22, J̄ = J̄11 ⊕ J̄22.

Theorem 3.1. Let H, X be as in the Theorem 2.1. Let λ > 0 be an eigenvalue
of H of multiplicity n(λ) (for λ < 0 we consider −H). Let the orthonormal bases of
X and X⊥ be chosen such that (3.1) holds. Write KS = |Λ2|

−1/2K|Λ1|
−1/2, where K

is defined by (2.3). Suppose that there exist constants α > γ and β > γ such that

‖λ|Ξλ|
−1 − J11‖ ≤ γ, σmin(λ|Ξ̂λ|

−1 − J22) > α, (3.4)

‖λ|Ωλ|
−1 − J̄11‖ ≤ γ, σmin(λ|Ω̂λ|

−1 − J̄22) > β. (3.5)

If Ξλ ⊕ Ωλ is of order n(λ) and ‖KS‖ ≤ γ < 1, then

‖λΞ−1
λ − I‖ ≤

1

1 −
‖KS‖

2

αβ

‖KS‖
2

β
≤

‖U‖2‖Y ‖2

1 −
‖U‖2‖Y ‖2 sin2 φ

αβ

sin2 φ

β
, (3.6)

‖λΩ−1
λ − I‖ ≤

1

1 −
‖KS‖

2

αβ

‖KS‖
2

α
≤

‖U‖2‖Y ‖2

1 −
‖U‖2‖Y ‖2 sin2 φ

αβ

sin2 φ

β
, (3.7)

where KS = U∗JY and U , Y and sinφ are defined as in Corollary 2.2.
Proof. Our proof is similar to the proof of [1, Theorem 2.1], and most of it can be

omitted but we include the whole proof for completeness. Without loss of generality
we can assume

H =

[
Λ1 K∗

K Λ2

]
rM
rN

. (3.8)

where Λ1 and Λ2 are given by (3.1). Otherwise one can work with Ĥ from the proof
of the Theorem 2.1. Matrix H is a non-singular matrix of dimension r × r.
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Matrices J and J̄ are diagonal matrices which contain signs of Λ1 and Λ2 from
(3.1). It is easy to show that under the assumptions (3.4) and (3.5), J11 = I and
J̄11 = I, thus |Ξλ| = Ξλ and |Ωλ| = Ωλ. Indeed, let us show that J11 = I. From (3.4)
we have

‖λ|Ξλ|
−1 − J11‖ < 1

or

max
j

∣∣∣∣
λ

|λj |
− sign(λj)

∣∣∣∣ < 1, j = 1, . . . ,dim(Ξλ).

The last inequality is equivalent to

|λ− sign(λj)|λj || < |λj |,

which can not be obtained for λj < 0, thus λj > 0 for all j, and we conclude that
J11 = I.

By Sylvester’s low of inertia, the matrix

HS(λ) = (|Λ1| ⊕ |Λ2|)
−1/2(H − λI)(|Λ1| ⊕ |Λ2|)

−1/2

has rank n− n(λ). It has the following block structure:

HS(λ) =




I − λ|Ξλ|
−1 0 (K

(1,1)
S )∗ (K

(2,1)
S )∗

0 J22 − λ|Ξ̂λ|
−1 (K

(1,2)
S )∗ (K

(2,2)
S )∗

(K
(1,1)
S ) (K

(1,2)
S ) I − λ|Ωλ|

−1 0

(K
(2,1)
S ) (K

(2,2)
S ) 0 J̄22 − λ|Ω̂λ|

−1


 .

Let ĤS(λ) be similar matrix to HS(λ) defined by

ĤS(λ) = ΠTHS(λ)Π

=




I − λ|Ξ−1
λ | (K

(1,1)
S )∗ 0 (K

(2,1)
S )∗

(K
(1,1)
S ) I − λ|Ωλ|

−1 (K
(1,2)
S ) 0

0 (K
(1,2)
S )∗ J22 − λ|Ξ̂λ|

−1 (K
(2,2)
S )∗

(K
(2,1)
S ) 0 (K

(2,2)
S ) J̄22 − λ|Ω̂λ|

−1


 .

where Π denotes an appropriate permutation matrix.
The assumptions (3.4) and (3.5) imply

σmin((J22 − λ|Ξ̂λ|
−1) ⊕ (J̄22 − λ|Ω̂λ|

−1)) ≥ min{α, β} (3.9)

> γ ≥ ‖KS‖ ≥ max
1≤i,j≤2

‖K
(i,j)
S ‖ (3.10)

Hence the matrix

C =

[
J22 − λ|Ξ̂λ|

−1 (K
(2,2)
S )∗

(K
(2,2)
S ) J̄22 − λ|Ω̂λ|

−1

]
=

[
C11 C12

C21 C22

]
,

C12 = C∗
21

and its diagonal blocks C11 and C22 are non-singular. Therefore (see [2, Section 0.7.3])

C−1 =

[ [
C11 − C12C

−1
22 C21

]−1
C−1

11 C12

[
C21C

−1
11 C12 − C22

]−1

[
C21C

−1
11 C12 − C22

]−1
C21C

−1
11

[
C22 − C21C

−1
11 C12

]−1

]
,
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provided that all matrices in the brackets are non-singular. However this follows
since these matrices are (signed) Schur complements of C11 and C22 in C. By the

last assumption C is of order n − n(λ) what is also the rank of ĤS(λ). Since C is

non-singular its Schur complement in ĤS(λ) must be zero ([3, p.183]). Hence

[
I − λΞ−1

λ (K
(1,1)
S )∗

(K
(1,1)
S ) I − λΩ−1

λ

]
=

[
0 (K

(2,1)
S )∗

(K
(2,1)
S ) 0

]
C−1

[
0 (K

(1,2)
S )∗

(K
(1,2)
S ) 0

]
. (3.11)

From (3.11) we obtain

I − λΞ−1
λ = (K

(2,1)
S )∗

[
J̄22 − λ|Ω̂λ|

−1 −K
(2,2)
S (J22− λ|Ξ̂λ|

−1)−1(K
(2,2)
S )∗

]−1

K
(2,1)
S

I − λΩ−1
λ = (K

(1,2)
S )

[
J22 − λ|Ξ̂λ|

−1 − (K
(2,2)
S )∗(J̄22 − λ|Ω̂λ|

−1)−1(K
(2,2)
S )

]−1

(K
(1,2)
S )∗.

Now applying standard 2-norm to the expressions on the left- and right-hand side we
obtain

‖I − λΞ−1
λ ‖ ≤

‖K
(2,1)
S ‖2

β −
‖K

(2,2)
S ‖2

α

‖I − λΩ−1
λ ‖ ≤

‖K
(1,2)
S ‖2

α−
‖K

(2,2)
S ‖2

β

Since

max
1≤i,j≤2

‖K
(i,j)
S ‖ ≤ ‖KS‖

the first inequalities of (3.6) and (3.7) are proved. The upper bounds for (3.6) and
(3.7) follow from Corollary 2.2.

Theorem 3.1 is a proper generalization of [1, Theorem 2.1], since in positive
semidefinite case J = I and bounds (3.6) and (3.7) have the same form as the bound
from [1, Theorem 2.1].

The following example is indefinite version of Example 2.4 from [1], and it shows
that for a certain Hermitian matrices results from Theorem 1.2 and Theorem 1.3 can
not be applicable.

Example 1. Let

H =



−1010 1 10−13

1 −2 · 10−5 10−7

10−13 10−7 −10−5


 , X =




0
1
0


 X⊥ =




0 1
0 0
1 0


 .

Then

M =
[
2 · 10−5

]
, R =

[
1 0 10−7

]∗
, ‖R‖ ≈ 1.

The separation δ from Theorem 1.2 is of order 10−5, and this also holds for separations
δk and δ̃k from Theorem 1.3. In Theorem 1.3 ‖R0‖ = ‖R‖. All this means that in this
these theorems are not applicable.
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On the other hand Theorem 2.1 ensure that for some j0 ∈ {1, 2, 3} holds

λj0 − 2 · 10−5

√
|λj0 | · 2 · 10−5

< 1.24 · 10−2. (3.12)

Since ‖Ks‖ ≈ 7.4 · 10−3, we can take γ = 2 · 10−2 in Theorem 2.1. If we consider
(3.12) and by taking β = 0.9 we can assume that conditions from (3.4) are satisfied.
Now, the bound from Theorem 3.1 yields

λj0 − 2 · 10−5

λj0

< 6.1 · 10−5.
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