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Abstract

We consider a damped linear vibrational system whose dampers de-
pend linearly on the viscosity parameter v. We show that the trace of the
corresponding Lyapunov solution can be represented as a rational function
of v whose poles are the eigenvalues of a certain skew symmetric matrix.
This makes it possible to derive an asymptotic expansion of the solution
in the neighborhood of zero (small damping).

1 Introduction

We consider a damped linear vibrational system

Mẍ + Cẋ + Kx = 0 (1.1)

where the matrices M,C,K (mass, damping, stiffness) are symmetric, M,K are
positive definite and C is positive semidefinite. If internal damping is neglected
C has often small rank as it describes a few dampers built in to calm down
dangerous vibrations. Often C has the form

C = vC0

where v is a variable viscosity and C0 describes the geometry of a damper. C0

will have rank 1, 2 or 3 according to whether the damper can exhibit linear,
planar or spatial displacements.
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An example is the so-called n-mass oscillator or oscillator ladder (Fig. 1)
where

M = diag(m1,m2, . . . ,mn)

K =




k1 −k1

−k1 k1 + k2 −k2

. . .
. . .

. . .

−kn−2 kn−2 + kn−1 −kn−1

−kn−1 kn−1 + kn




,

C = ve1e
T
1 + v(e3 − e2)(e3 − e2)

T . (1.2)

Figure 1: The n-mass oscillator with two dampers

Here mi > 0 are the masses, ki > 0 the spring constants or stiffnesses, ei is the
i-th canonical basis vector, and v is the viscosity of the damper applied on the
i-th mass.

After the substitution

y1 = ΩΦ−1x , y2 = Φ−1ẋ , (1.3)

where
KΦ = MΦΩ2 , ΦT MΦ = I (1.4)

Ω = diag(ω1, . . . , ωn), ω1 < . . . < ωn (1.5)

is the eigenreduction of the symmetric positive definite matrix pair K,M , the
system (1.1) goes over into

ẏ = Ay , y =

[
y1

y2

]
, (1.6)

A =




0 Ω

−Ω −D


 , D = ΦT CΦ . (1.7)

Then

E =
1

2

∞∫

0

(
ẋT Mẋ + xT Kx

)
dt =

∞∫

0

‖y‖2dt =

∞∫

0

‖eA t y0‖
2dt , (1.8)
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where y0 is the initial data. Thus,

E ≡ E(y0) = yT
0 Xy0 ,

where

X =

∞∫

0

eAT t eAtdt (1.9)

solves the Lyapunov equation

AT X + XA = −I . (1.10)

Our penalty function is obtained by averaging E over all initial data with
the equal energy, that is, we form

Ē =

∫

‖y0‖=1

yT
0 Xy0dσ

where dσ is a probability measure on the unit sphere in R
2n. Since by the map

X 7→

∫

‖y0‖=1

yT
0 Xy0 dσ

is given a linear functional on the space of the symmetric matrices, by Riesz
theorem there exists a symmetric matrix Z such that

X 7→

∫

‖y0‖=1

yT
0 Xy0 dσ = Tr(ZX) , for all symmetric matrices X .

Let y ∈ R
2n be arbitrary. Set X = yyT . Then

0 ≤

∫

‖y0‖=1

yT
0 Xy0 dσ = Tr(ZX) = Tr(ZyyT ) = Tr(yT Zy) ,

hence Z is always positive semi-definite.
For any given measure there is a unique positive semidefinite matrix Z such

that
Ē = Tr(ZX) . (1.11)

For the measure σ generated by the Lebesgue measure (i.e. the usual surface
measure) on R

2n, we obtain Z = 1
2n

I. For the convenience of the reader, we
give a sketch of the proof:

Recall,

Zij =

∫

S

yiyj σ(dy) .

One can easily see using Minkowski formula (see [2]) that

Zij =

∫

S

yiyj σ(dy) =
1

2ε
lim
ε→0

∫

d(y, S) ≤ ε

yiyj σ(dy) ,
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here S denotes the unit sphere in R
2n and d(y, S) is a corresponding distance.

Obviously, Zij = 0 for i 6= j and Zii = Zjj , for i, j ∈ {1, 2, . . . , 2n}. Since

Z11 + Z11 + . . .Z2n2n = lim
ε→0

1

2ε
vol
(
y ∈ R

2n : d(y, S) ≤ ε
)

= 1 ,

it follows Z = 1
2n

I. The more details about the structure of the matrix Z one
can find in [4].

We have shown that
∫

‖y0‖=1

yT
0 Xy0 dσ = min

is equivalent to
Tr(ZX) = min . (1.12)

where Z is a symmetric positive semidefinite matrix which may be normalized
to have a unit trace.

If one is interested in damping a certain part of the spectrum of the matrix A

(which is very important in applications) then the matrix Z will have a special
structure. For example, let σ = σ1 × σ2 × σ1 × σ2, where σ1 is a measure on
the frequency subspace determined by ω ≤ ωmax ≡ ωs generated by Lebesgue
measure, that is σ1 is a measure on the frequency subspace which corresponds
to the eigenfrequencies (defined by (1.5)) ω1, . . . ωs and σ2 is Dirac measure on
the complement. Then we obtain that the corresponding matrix Z has the form

Zs = Z =
1

2s




Is 0 0 0
0 0 0 0
0 0 Is 0
0 0 0 0


 , (1.13)

where Is is the identity matrix of the dimension s which is defined by ωmax = ωs.
Here ωmax = ωs is critical frequency with the property that the eigenfrequencies
from (1.5) greater then ωs are not dangerous. Hence, we damp first s eigenfre-
quencies. The construction of Z from (1.13) is a generalization of the simplest
case Z = 1

2n
I.

In [7] a simple solution of the problem (1.11) has been presented for A from
(1.7) and rank(C) = 1. In particular,

Tr(ZX(v)) = const +
a

v
+ bv, a, b > 0 , (1.14)

which made it possible to find the minimum by a simple formula explicitly. The
case rank(C) > 1 seems to be essentially more difficult to handle.

The main result of this paper is the explicit formula:

X(v) =
Ψ−1

v
− Ψ0 − vΨ̂1 + v

s∑

i=1

λi (λiΦi − vΥi)

λ2
i + v2

. (1.15)
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where Ψ−1, Ψ0, Ψ̂1, Φi and Υi are m × m matrices and λi are eigenvalues of
the pencil (A0, D) where A0 and D are matrices which correspond to the linear
operators

X 7→ −A0X + XA0 ,

X 7→ DX + XD ,

respectively. Thus, technically, we have turned the viscosity into the spectral
parameter.

Further, we have obtained a simple formula for the Ψ−1 in (1.15). This
matrix is responsible for the behavior of the solution X(v) in the neighborhood
of zero (small damping):

Ψ−1 =

[
D∆ 0
0 D∆

]
,

where
D∆ = (diag (D))−1 .

We will use the following notation: matrices written in the simple Roman
fonts, M , D or K for example will have n2 entries. Matrices written in the
mathematical bold fonts, A, B will have m2 entries, where m = 2n (that is A,
B are matrices defined on the 2n-dimensional phase space). Finally, matrices
written in the Blackboard bold fonts A, or D will have more than m2 entries.

2 The main result

As we have said in the Introduction, our aim is to obtain the solution X of the
Lyapunov equation

A(v)T X + XA(v) = −I, (2.1)

where Z is defined by (1.13) and I is m × m identity matrix.
From (1.7) it follows that A(v) can be written as

A(v) ≡ A0−v D ,where A0 =




Ω1

Ω2

. . .

Ωn


 , Ωi =

[
0 ωi

−ωi 0

]
(2.2)

and D = D0D
T
0 , where

D0 =




0 0 . . . 0
d11 d12 . . . d1r

0 0 . . . 0
d21 d22 . . . d2r

...
...

...
...

0 0 . . . 0
dn1 dn2 . . . dnr




,
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dij are entries of the matrix

D0 = P

[
0

LC

]
, C0 = LCLT

C ,

and P is the “perfect shuffling” permutation.
Now, we proceed with solving equation (2.1). As it is well known, Lyapunov

equation (2.1) is equivalent to ([3, Theorem 12.3.1])

(
I ⊗ (A0 − v D)T + (A0 − v D)T ⊗ I

)
· vec(X) = −vec(I) , (2.3)

where L⊗T denotes the Kronecker product of L and T, and vec(I) is the vector
formed by ”stacking” the columns of I into one long vector.

Further, we will need the following two m2 × m2 matrices defined by

A0 = I ⊗ AT
0 + AT

0 ⊗ I , D = I ⊗ D0D
T
0 + D0D

T
0 ⊗ I . (2.4)

It is easy to show that D = DF D
T
F , where

DF =
[
I ⊗ D0 D0 ⊗ I

]
. (2.5)

Now, using (2.5) and (2.4) it follows that solution vec(X) of equation (2.3) can
be written as

vec(X) = −
(
A0 − vDF D

T
F

)−1
vec(I) . (2.6)

Obviously, there exists a unitary matrix U such that

U
T

A0U =

[
0

Â0

]
, (2.7)

where A0 is the skew-symmetric matrix corresponds with linear operator defined
in (2.4) and Â0 is a non-singular block diagonal matrix defined by

Â0 = diag(Ξ1, . . . ,Ξm2
) where Ξi =

[
0 −µi

µi 0

]
(2.8)

where ±iµi, i = 1, . . . ,m2 are non-zero eigenvalues of matrix A0, that is, 0 6=
µi = (±ωi) − (±ωj) for i, j = 1, . . . , n (see [3, Corollary 12.2.2]). Note that
m2 = (m2 − m)/2. Set [

D1

D2

]
= U

T
DF ,

where DF is defined in (2.5).
Now,

A0 − vDF D
T
F = U

([
0

Â0

]
− v

[
D1D

T
1 D1D

T
2

D2D
T
1 D2D

T
2

])
U

T . (2.9)

Taking

G =

[
I 0

−D2D
T
1 (D1D

T
1 )−1 I

]
(2.10)
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we obtain

A0 − vDF D
T
F = U G

−1

[
−vD1D

T
1

Ã

]
G

−T
U

T , (2.11)

where
Ã = Â0 − vD2(I − D

T
1 (D1D

T
1 )−1

D1)D
T
2 . (2.12)

Note that we can write

D2(I − D
T
1 (D1D

T
1 )−1

D1)D
T
2 = FF

T .

Further, we have to find the inverse of Ã = Â0 − vFF
T . This is obtained by

using the Sherman-Morrison-Woodbury formula ([1, (2.1.4), pg.51.]), that is,

(Â0 − v FF
T )−1 = Â

−1
0 + vÂ

−1
0 F

(
I − vF

T
Â

−1
0 F

)−1

F
T

Â
−1
0 . (2.13)

The inverse of I − vF
T

Â
−1
0 F remains to be found. Let

Λ = diag

([
0 λ1

−λ1 0

]
,

[
0 λ2

−λ2 0

]
, ....,

[
0 λs

−λs 0

])
,

where ±iλ1, ±iλ2 ,..., ±iλs are non-vanishing finite eigenvalues of the problem

(A0 − λD) vec(Y) = 0.

Since F
T

Â
−1
0 F is skew-symmetric, then there exists an orthogonal matrix US of

order 2(r − 1)m such that

UT
S F

T
Â

−1
0 FUS =

[
0 0
0 Γ

]
, (2.14)

where Γ = Λ−1.
Using (2.11), (2.13), (2.14) and (2.6) it follows

vec(X) = −U G
T

[
∆1

∆2

]
GU

T vec(I) , (2.15)

where

∆1 = −
(D1D

T
1 )−1

v
, ∆2 = Â

−1
0 + vÂ

−1
0 FUS

[
I 0

(I − vΓ)−1

]
UT

s F
T

Â
−1
0 .

(2.16)
Since Γ is block diagonal we have

(I − vΓ)−1 = diag

(
1

λ2
1 + v2

[
λ2

1 −vλ1

vλ1 λ2
1

]
, ....,

1

λ2
s + v2

[
λ2

s −vλs

vλs λ2
s

])
.

(2.17)
Using (2.16) and (2.15) it follows

vec(X) =

(
V−1

v
− V0 − vV̂1 + v

s∑

i=1

λi (λiWi − vZi)

λ2
i + v2

)
vec(I) , (2.18)
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where matrices V−1, V0, V̂1, Wi and Zi are constructed using (2.10), (2.16) and
(2.15).

By ”reshaping” vectors in (2.18) back into m × m matrices we obtain the
solution of equation (2.1)

X =
Ψ−1

v
− Ψ0 − vΨ̂1 + v

s∑

i=1

λi (λiΦi − vΥi)

λ2
i + v2

. (2.19)

If one is interested in deriving an optimal damping, then according to (1.11)
one has to minimize the function f(v) = tr(ZX(v)), where

tr(ZX(v)) = vec(Z)T vec(X) = −vec(Z)T
(
A0 − vDF D

T
F

)−1
vec(I) .

This gives

Tr(ZX) =
X−1

v
− X0 − vX̂1 + v

s∑

i=1

λi (λiXi − vYi)

λ2
i + v2

, (2.20)

where

X−1 = vec(Z)T
V−1 vec(I) ,

X0 = vec(Z)T
V0 vec(I) , (2.21)

X̂1 = vec(Z)T
V̂−1 vec(I) ,

and
Xi = vec(Z)T

Wi vec(I) , Yi = vec(Z)T
Zi vec(I) . (2.22)

Note that the function Tr(ZX) from (2.20) is a generalization of the function
Tr(X) defined in (1.14).

Remark 2.1 In the case when Z is a diagonal matrix, the function Tr(ZX)
from (2.20) has the following simpler form:

Tr(ZX) =
X−1

v
− vX̂1 + v

s∑

i=1

λ2
i Xi

λ2
i + v2

.

Finally we derive an explicit formula for the matrix Ψ−1. Let U0 be that
part of U corresponding to the null-space of A0. From (2.18) it follows that

vec(Ψ−1) = V−1 vec(I) ≡ −U0(D1D
T
1 )−1

U
T
0 vec(I) . (2.23)

It is easily seen that i-th column of the matrix U0 can be written as vec(Oi),
where Oi is a block-diagonal matrix and

O2i−1 = diag(0, . . . , 0, Oii, 0, . . . , 0)

O2i = diag(0, . . . , 0, Ôii, 0, . . . , 0)
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where Oii and Ôii are ”orthogonal” solutions of

−ΩiOij + OijΩj = 0 i, j = 1, . . . , n ,

that is

Oii =

[
1√
2

0

0 1√
2

]
, and Ôii =

[
0 1√

2

− 1√
2

0

]
.

Let 〈A,B〉 = Tr(AT B) be the usual Frobenius scalar product. Then, we can
write the (p, q)-th element of U

T
0 DF D

T
F U0 as

(U0)
T
(:,p)DF D

T
F (U0)(:,q) = 〈Dpq Op + Op Dpq,Oq〉 p, q = 1, . . . ,m ,

where Dpq = (Dpq) and

Dpq =

[
0 0
0 D(p,:)D

T
(q,:)

]
.

The orthonormality property

〈Op,Oq〉 = δpq ,

implies

(
U

T
0 DF D

T
F U0

)−1
= diag(1/(D)22, 1/(D)22, . . . , 1/(D)mm, 1/(D)mm) .

Using the fact that U0U
T
0 vec(I) = vec(I), from (2.23) it follows that

Ψ−1 = diag

(
1

D22
,

1

D22
, . . . ,

1

Dmm

,
1

Dmm

)
. (2.24)

After applying a perfect shuffle permutation we have

Ψ−1 =

[
D∆ 0
0 D∆

]
, (2.25)

where
D∆ = (diag (D))−1 .

The explicitness of the obtained formulas is attractive for possible numerical
computation. Our first attempts to perform this task did not succeed due to
unexpected complexity problems. We will come back to this issue in our future
research.
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