
On the ADI Method for Sylvester Equations

Peter Benner

Mathematics in Industry and Technology, Fakultät für Mathematik, TU Chemnitz,

09107 Chemnitz, Germany

Ren-Cang Li 1

Department of Mathematics, University of Texas at Arlington, P.O. Box 19408,

Arlington, TX 76019-0408, USA

Ninoslav Truhar 2

Department of Mathematics, J.J. Strossmayer University of Osijek, Trg Ljudevita

Gaja 6, 31000 Osijek, Croatia

Abstract

This paper is concerned with the numerical solution of large scale Sylvester equa-
tions AX − XB = C, Lyapunov equations as a special case in particular included,
with C having very small rank. For stable Lyapunov equations, Penzl (2000) and
Li and White (2002) demonstrated that the so called Cholesky factor ADI method
with decent shift parameters can be very effective. In this paper we present a gen-
eralization of the Cholesky factor ADI method for Sylvester equations. An easily

implementable extension of Penz’s shift strategy for the Lapunov equa-

tion is presented for the current case. It is demonstrated that Galerkin

projection via ADI subspaces often produces much more accurate solu-

tions than ADI solutions.

Key words: Sylvester equation, factored ADI method, Galerkin projection
15A24, 15A90, 40C05, 37L99

Preprint submitted to Elsevier 18 August 2009

1 Introduction

An m × n Sylvester equation takes the form

AX − XB = C, (1.1)

where A, B, and C are m × m, n × n, and m × n, respectively, and the
unknown matrix X is m × n. A Lyapunov equation is a special case with
m = n, B = −A∗, and C = C∗, where the star superscript denotes complex
conjugation and transposition. Equation (1.1) has a unique solution if and
only if A and B have no common eigenvalues, see, e.g., [29], which will be
assumed throughout this paper.

Sylvester equations appear frequently in many areas of applied mathematics,
both theoretically and practically. We refer the reader to the elegant sur-
vey by Bhatia and Rosenthal [10] and references therein for a history of the
equation and many interesting and important theoretical results. Sylvester
equations play vital roles in a number of applications such as matrix eigen-
decompositions [25], control theory [13], model reduction [1, 4, 39], numerical
solution of matrix differential Riccati equations [22], image processing [11],
and many more.

This paper is concerned with the numerical solution of Sylvester equations.
Lyapunov equations as a special case are also discussed. There are several
numerical algorithms for that purpose. The standard ones are the Bartels-
Stewart algorithm [3] and the Hessenberg-Schur method first described by
Enright [22], but more often attributed to Golub, Nash, and Van Loan [24].
All these methods are efficient for dense matrices A and B. However, recent
interest is directed more towards large and sparse matrices A and B, and
C = GF ∗ with very low rank, where G and F have only a few columns.
Applications in which the constant term C naturally appears in factorized form
range from optimal control [5] and image restoration [11] to model reduction
based on the cross-Gramian approach [1, 4, 39]. In these cases, the standard
methods are often too expensive to be practical, and iterative methods become
more viable choices. Common methods for sparse A, B are Krylov subspace
based algorithms [2, 20, 27, 28, 38] and Alternating-Directional-Implicit (ADI)

Email addresses: benner@mathematik.tu-chemnitz.de (Peter Benner),
rcli@uta.edu (Ren-Cang Li), ntruhar@mathos.hr (Ninoslav Truhar).
1 Supported in part by the National Science Foundation under Grant No. DMS-
0510664 and DMS-0702335
2 Supported in part by the National Science Foundation under Grant No. 235-
2352818-1042. Part of this work was done while this author was a visiting professor
at the Department of Mathematics, University of Texas at Arlington, Arlington,
TX, USA.

2

iterations [7, 26, 30, 32, 33, 35, 41]. Advantages of Krylov subspace based
algorithms over ADI iterations are that no knowledge about the spectra of
A and B is needed and (except for [38]) no linear systems of equations with
(shifted) A and B have to be solved. But ADI iterations often enable faster
convergence if (sub)optimal shifts to A and B can be effectively estimated. So
for a problem for which linear systems with shifted A and B can be solved at
modest cost, ADI iterations may turn out to be better alternatives. This is
often true for stable Lyapunov equations from control theory [7, 26, 30, 33].

Recently, Ding and Chen proposed a few simple iterative schemes for matrix
equations in [17, 18, 19] (and others therein). The schemes, resembling the
classical Jacobi and Gaussian iterations for linear systems, are easy to imple-
ment and cost little per step but converge linearly at the best. It has been
considered in [18, 19, 23] that the gradient-based iterative (GI) algorithms
and least squares based iterative algorithms [20, 23] for solving (coupled) ma-
trix equations are novel and highly efficient algorithms based on the hierarchi-
cal identification principle [15, 16] which regards the unknown matrix as the
system parameter matrix to be identified. These (coupled) matrix equations in-
clude the Lyapunov matrix equations and Sylvester matrx equations as special
cases. ADI iterations have a different objective: achieving fast convergence
rate through exploiting matrices’ spectrum information.

In this paper, we shall first extend the Cholesky factor ADI for Lyapunov
equations to solve Sylvester equations based on previous work in [6, 40, 43].
Then, we argue that often much more accurate solutions than the ADI solu-
tions can be obtained by performing a Galerkin-type projection via the row
and column subspaces of the computed solutions. The improvement is often
more drastic with poor shifts. Indeed, in the absence of knowledge of the
spectra, currently there is no provable way to select good shifts, and existing
practices like [8, 33] are more heuristic than rigorously justifiable, except for
stable Lyapunov equations with Hermitian A [21, 42, 31] and for Sylvester
equations with Hermitian A and B [36] 3 .

The rest of this paper is organized as follows. Section 2 reviews the ADI
method and derives factored ADI iterations for Sylvester equations. An exten-
sion of Penzl’s shift strategy to Sylvester equations is explained in Section 3.
Projection ADI subspace methods via Galerkin projection or the minimal
residual condition are presented in Section 4. Section 5 explains the connec-
tion between the new algorithm and Cholesky factor ADI for Lyapunov equa-
tions. We report several numerical tests in Section 6 and finally present our
conclusions in Section 7.

Notation. Throughout this paper, Cn×m is the set of all n × m complex

3 The parameters for the case were also made available by E. Wachspress in 2000

3

matrices, Cn = Cn×1, and C = C1. Similarly define Rn×m, Rn, and R except
replacing the word complex by real. In (or simply I if its dimension is clear
from the context) is the n × n identity matrix, and ej is its jth column.
The superscript “·∗” denotes conjugate transposition while “·T” stands for
transposition only. For scalars, ᾱ is the complex conjugate of α, and ℜ(α)
takes the real part of α. We shall also adopt MATLAB-like convention to
access the entries of vectors and matrices. i : j is the set of integers from i
to j inclusive and i : i = {i}. For a vector u and a matrix X, u(j) is u’s jth
entry, X(i,j) is X’s (i, j)th entry; X’s submatrices X(k:ℓ,i:j), X(k:ℓ,:), and X(:,i:j)

consist of intersections of row k to row ℓ and column i to column j, row k to
row ℓ, and column i to column j, respectively.

2 ADI for Sylvester Equations

As it has been shown in [43] (more detailed in [40]) for given two sets of pa-
rameters {αi} and {βi}, the factored Alternating-Directional-Implicit (fADI)
iteration for iteratively solving (1.1) proceeds as follows:

For k = 0, 1, . . .,

Zk =
(
Z(1) Z(2) · · · Z(k)

)
,

with





Z(1) = (A − β1I)−1G,

Z(i+1) = (A − αiI)(A − βi+1I)−1Z(i)

= Z(i) + (βi+1 − αi)(A − βi+1I)−1Z(i),

(2.1)

and

Yk =
(
Y (1) Y (2) · · · Y (k)

)
,

with





Y (1)∗ = F ∗(B − α1I)−1,

Y (i+1)∗ = Y (i)∗(B − αi+1I)−1(B − βiI)

= Y (i)∗ + (αi+1 − βi)Y
(i)∗(B − αi+1I)−1,

(2.2)

and

Xk = ZkDkY
∗

k , Dk = diag ((β1 − α1)Ir, . . . , (βk − αk)Ir) . (2.3)

Formulas (2.1) – (2.3) yields a new fADI which is a natural extension of CF-
ADI [30] and LR-ADI [33, 35] for stable Lyapunov equations.

Algorithm 1 (fADI for Sylvester equation AX − XB = GF ∗)

4

Input: (a) A(m×m), B(n×n), G(m×r), and F (n×r);
(b) ADI shifts {β1, β2, . . .}, {α1, α2, . . .};
(c) k, the number of ADI steps;

Output: Z(m×kr), D(kr×kr), and Y (n×kr) such that ZDY ∗ approximately
solves Sylvester equation AX − XB = GF ∗;
1. Z(:,1:r) = (A − β1I)−1G; (Y ∗)(1:r,:) = F ∗(B − α1I)−1;
2. for i = 1, 2, . . . , k do
3. Z(:,ir+1:(i+1)r) = Z(:,(i−1)r+1:ir)

+(βi+1 − αi)(A − βi+1I)−1Z(:,(i−1)r+1:ir);
4. (Y ∗)(ir+1:(i+1)r,:) = (Y ∗)((i−1)r+1:ir),:)

+(αi+1 − βi) (Y ∗)((i−1)r+1:ir),:) (B − αi+1I)−1;
5. end for;
6. D = diag ((β1 − α1)Ir, . . . , (βk − αk)Ir).

Remark 1 For general dense A and B, Algorithm 1 as is is not appealing
computationally because a linear system with a shifted A costs O(m3) while a
linear system with a shifted B costs O(n3). That makes it no better than, e.g.,
the standard Bartels-Stewart algorithm [3] or the Hessenberg-Schur method
[22, 24]. For large m and n which is the focus of this article, often A and B
either are very sparse, meaning only a small percentage of their entries are
nonzero, or have certain structures, e.g., narrow banded, so that the costs for
solving the linear systems may likely be O(m2) and O(n2), or sometimes even
less O(m) and O(n). For modest m and n, some pre-processing can be done
to bring down the cost of each fADI step to O(m2 + n2) by first performing
Hessenberg reductions on A and B, a standard practice for computing the
Schur form of a nonsymmetric matrix [14]. This is done via unitary trans-
formations and thus stable. As Wachspress pointed out to the authors, it is
also possible to reduce A and B to very narrow banded matrices by general
similarity transformations but care must be taken to monitor the conditioning
of the transformation matrices.

We also note that the Z- and Y -factors in Algorithm 1 can be computed in
parallel.

3 A shift strategy

ADI shifts determine the speed of the convergence of the method. There are
a number of strategies out there, and most of them are based on heuristic
arguments, except in the Hermitian cases. In his thesis, Sabino [36] presented
a quite complete review of the existing strategies. Since this paper, however,
is not about looking for yet another shift strategy, for testing purpose we shall
simply discuss an easily implementable extension of Penzl’s [33, 35] who did
it for Lyapunov equations.

5

As it has been emphasize in the introduction, our approach here is based
on the following idea: try to solve Sylvester equation using any two sets of
ADI parameters (we propose extension of Penzl’s shifts) and then improve
the obtained solution by performing a Galerkin-type projection via the row
and column subspaces of the computed solutions.

When A and B are Hermitian (this is in fact true for normal A and B), the
optimal ADI parameters are solutions of the following ADI minimax problem
for k ADI steps with E = eig(A) and F = eig(B), where eig(·) denotes the
spectrum of a matrix.

Find αj and βj, j = 1, . . . , k, such that

min
αi∈C

βj∈C

max
x∈E

y∈F

k∏

j=1

∣∣∣∣∣
(x − αj)(y − βj)

(x − βj)(y − αj)

∣∣∣∣∣ .
(3.1)

In practice since eig(A) and eig(B) are not known a priori, E and F are often
replaced by intervals that contain the eigenvalues of A and B, respectively. In
the case for Lyapunov equations, B = −A∗, βj = −ᾱj (the complex conjugate
of αj), and F = −E, Problem (3.1) reduces to

Find αj, j = 1, . . . , k, such that

min
αi∈C

max
x∈E

k∏

j=1

∣∣∣∣∣
x − αj

x + ᾱj

∣∣∣∣∣ .
(3.2)

Regardless of whether A is Hermitian or not, for stable Lyapunov equations
Penzl [35] proposed a heuristic shift-selection strategy by solving a much sim-
plified (3.2): Find αj , j = 1, . . . , k, such that

min
αi∈E

max
x∈E

k∏

j=1

∣∣∣∣∣
x − αj

x + ᾱj

∣∣∣∣∣ (3.3)

with E set to be a collection of certain estimates of the extreme eigenvalues
of A. The strategy usually works very well. In obtaining E, Penzl proposed to
run a pair of Arnoldi processes. The first process delivers k+ Ritz values that
tend to approximate well “outer” eigenvalues, which are generally not close to
the origin. The second process is used to get k− Ritz values to approximate
those eigenvalues near the origin. His algorithm then chooses a set of shift
parameters out of E by solving (3.3). The shifts delivered by the heuristic are
ordered in such a way that shifts, which should reduce the ADI error most,
are applied first.

6

Penzl’s strategy can be naturally extended to the case for Sylvester equations.
Now we need to compute two sets {α1, . . . , αk} and {β1, . . . , βk} of presumed
good shift parameters. We start by generating two discrete sets E and F which
“well” approximates parts of the spectra of A and B, respectively, and then
solve a much simplified (3.1): Find αj and βj, j = 1, . . . , k, such that

min
αi∈E

βj∈F

max
x∈E

y∈F

k∏

j=1

∣∣∣∣∣
(x − αj)(y − βj)

(x − βj)(y − αj)

∣∣∣∣∣ . (3.4)

Again the selected shifts are ordered in such a way that shifts, which should
reduce the ADI error most, are applied first. This is summarized in Algo-
rithm 2.

Algorithm 2 (ADI parameters by Ritz values (ADIpR))

Input: A, F , B, G, k;
Output: ADI parameters {α1, . . . , αk} and {β1, . . . , βk};

1. Run Arnoldi process with A on G to give the set E
+
A of Ritz values;

2. Run Arnoldi process with A−1 on G to give the set E
−

A of Ritz values;
3. E = E

+
A ∪ (1/E

−

A);
4. Run Arnoldi process with B∗ on F to give the set F

+
B of Ritz values;

5. Run Arnoldi process with B−∗ on F to give the set F
−

B of Ritz values;
6. F = conj(F+

B) ∪ conj(1/F
−

B);

7. Set {α1, β1} = arg min

α∈E

β∈F

max

x∈E

y∈F

∣∣∣ (x−α)(y−β)
(x−β)(y−α)

∣∣∣;

8. For i = 2, . . . , k do

9. Set {αi, βi} = arg min

α∈E
′

β∈F
′

max

x∈E

y∈F

∣∣∣ (x−α)(y−β)
(x−β)(y−α)

∣∣∣
∏i−1

j=1

∣∣∣ (x−αj)(y−βj)

(x−βj)(y−αj)

∣∣∣,

where E′ is E with α1, . . . , αi−1 deleted, and similarly for F′;
10. EndDo.

For more details about its efficient implementation, the reader is referred to
[40].

Remark 2 Recently, Wachspress in [44] improved spectral alignment. He
showed that the crucial values for determination of a proper set of ADI param-
eters are the minimum real part, the maximum real part, and the maximum
angle for each spectrum. This can be done with the precise knowledge of the
spectra. On the other hand as we have already mentioned in the previous re-
mark it is possible, for modest m and n, to reduce A and B to very narrow
banded matrices by general similarity transformations but care must be taken
to monitor the conditioning of the transformation matrices. Since this reduc-
tion enhances accurate eigenvalue estimation with the aid of double-implicit

7

LR reduction with bounded pivots to maintain low bandwidth. The LR ap-
proach could replace Arnoldi in algorithm 2 with shifts chosen to reveal the
crucial eigenvalues. This could be interesting problem for further studies.

4 Projection ADI Subspace Methods for Sylvester Equation

Given parameters {αi} and {βi}, we define the kth ADI column subspace to
be the column space of the kth ADI solution Xk = ZkDkY

∗

k and the kth ADI
row subspace to be the row space of X∗

k . Equivalently the kth ADI column
subspace is the column space of Zk, and the kth ADI row subspace is the row
space of Y ∗

k .

Our numerical experiments strongly suggest often these ADI subspaces are
quite good in the sense that the ADI column subspaces come very close to the
column space of X, the exact solution, and ADI row subspaces come very close
to the row space of X. This is true even for not so good parameters {αi} and
{βi}. Our numerical experiments also suggest that one single poor shift can
effectively offset all previous good shifts and thus degrade ADI approximations
enormously for the next many iterations.

Given that it is so hard to select optimal, sometime even decent, parameters
in general for ADI solutions to be any good, perhaps we should seek instead
solutions having form

X̃k = UkWkV
∗

k (4.1)

under the Galerkin condition or the minimal residual condition, where Uk has
the same columns space as Zk (Xk) and V ∗

k has the same row space as Y ∗

k (Xk).
We call a method as such a projection ADI subspace method. Since Zk and Yk

are computed one block at a time by Algorithm 1 from the very previous
blocks, Uk and Vk can be computed along the way, by, e.g., the (modified)
Gram-Schmidt orthogonalization process as soon as a new Z-block or Y -block
becomes available. Doing so leads to Uk and Vk with orthoonormal columns.

The idea of using Galerkin projection or minimizing the residual is not new.
What that is new here is our choices of projection subspaces. Previously it
was used when columns of Uk and Vk span a Krylov subspace of A on G and
a Krylov subspace of B∗ on F ∗, respectively [27, 28, 37] and more recently for
Lyapunov equations for which Uk = Vk spans a direct sum of Krylov subspaces
of A on G and A−1 on G [38].

8

4.1 Galerkin projection

Suppose Uk and Vk have orthonormal columns. Let residual Rk = AX̃k −
X̃kB − C for an approximation solution X̃k. The Galerkin condition enforces
U∗

kRkVk = 0. Thus

(U∗

kAUk)Wk − Wk(V
∗

k BVk) = U∗

kCVk (4.2)

which is a Sylvester equation but of a much smaller size and can be solved by,
e.g., Bartel-Stewart algorithm [3], or Golub-Nash-Van Loan algorithm [24].

Note that Uk and Vk do not necessarily have to have the same number of
columns. When they don’t, Wk will not be a square matrix.

4.2 A minimal residual method

The minimal residual condition requires to solve

min
Wk

‖Rk‖F ≡ min
Wk

‖A(UkWkV
∗

k) − (UkWkV
∗

k)B − C‖F . (4.3)

It turns out going from the simple Galerkin projection to this minimal residual
condition is utterly nontrivial computationally. The novel idea due to Hu and
Reichel [27, p.293] can be modified to work, thanks to Theorem 4.1 below. But
the amount of increased work makes it less attractive. Nevertheless, we still
present Theorem 4.1 which may be of independent interest of its own right.
Adopt the notation of Section 2 in its entirety. By (2.1) and (2.2), the kth
ADI column and row spaces are

Ck
def
= colspan{Z(1), Z(2), . . . , Z(k)}, Rk

def
= rowspan{Y (1)∗, Y (2)∗, . . . , Y (k)∗},

respectively.

Theorem 4.1 We have for i ≥ 1

AZ(i) = G +
i−1∏

j=1

(βj − αj)Z
(j) + βiZ

(i), (4.4)

Y (i)∗ B = F ∗ +
i−1∏

j=1

(αj − βj)Y
(j)∗ + αiY

(i)∗, (4.5)

where
∏0

j=1(· · ·) is taken to be 0. Therefore

9

ACk ⊆ colspan{G, Z(1), Z(2), . . . , Z(k)} = colspan{G} + Ck, (4.6)

RkB ⊆ rowspan{F ∗, Y (1)∗, Y (2)∗, . . . , Y (k)∗} = rowspan{F ∗} + Rk. (4.7)

Proof By (2.1), we have

AZ(1) = A(A − β1I)−1G

= G + β1(A − β1I)−1G

= G + β1Z
(1),

AZ(i+1) = AZ(i) + (βi+1 − αi)A(A − βi+1I)−1Z(i)

= AZ(i) + (βi+1 − αi)Z
(i) + (βi+1 − αi)βi+1(A − βi+1I)−1Z(i)

= AZ(i) + (βi+1 − αi)Z
(i) + βi+1(Z

(i+1) − Z(i))

= AZ(i) − αiZ
(i) + βi+1Z

(i+1)

= AZ(i−1) − αi−1Z
(i−1) + βiZ

(i) − αiZ
(i) + βi+1Z

(i+1)

= · · ·

= AZ(1) − α1Z
(1) +

i∏

j=2

(βj − αj)Z
(j) + βi+1Z

(i+1)

= G +
i∏

j=1

(βj − αj)Z
(j) + βi+1Z

(i+1)

which proves (4.4). Similarly

Y (1)∗B =F ∗(B − α1I)−1B

=F ∗ + α1F
∗(B − α1I)−1

=F ∗ + α1Y
(1)∗,

Y (i+1)∗B =Y (i)∗B + (αi+1 − βi)Y
(i)∗(B − αi+1I)−1B

=Y (i)∗B + (αi+1 − βi)Y
(i)∗ + (αi+1 − βi)αi+1Y

(i)∗(B − αi+1I)−1

=Y (i)∗B + (αi+1 − βi)Y
(i)∗ + αi+1(Y

(i+1)∗ − Y (i)∗)

=Y (i)∗B − βiY
(i)∗ + αi+1Y

(i+1)∗

=F ∗ +
i∏

j=1

(αj − βj)Y
(j)∗ + αi+1Y

(i+1)∗

which proves (4.5).

The objective function in (4.3) is the Frobenius norm of an m × n matrix.
Recall that the Sylvester equations we are interested have large m and n.
Potentially (4.3) is as difficult as the original equation itself. Using the results
of Theorem 4.1, we can reduced the size of the problem to at most (k +
1)r × (k + 1)r. We shall now explain how. Assume that both Uk and Vk have
orthonormal columns to begin with. Now orthogonalize G against the columns
of Uk, and F against the columns of Vk to get (Uk, Û) and (Vk, V̂), both having
orthonormal columns. It can be seen that both Û and V̂ have no more than r

10

columns. Theorem 4.1 implies

AUk = (Uk, Û)Ak, V ∗

k B = Bk(Vk, V̂)∗

for some matrices Ak and Bk. Then

A(UkWkV
∗

k) − (UkWkV
∗

k)B − C

=(Uk, Û)AkWkV
∗

k − UkWkBk(Vk, V̂)∗ − C

from which one can see that the solution Wk of (4.3) is the same as that of

min
Wk

∥∥∥∥∥∥∥
AkWk(I, 0) −




I

0


 WkBk − (Uk, Û)∗G[(Vk, V̂)∗F]∗

∥∥∥∥∥∥∥
F

, (4.8)

a much smaller problem than (4.3). This problem can be solved by borrow-
ing the idea of Hu and Reichel [27, p.293]. But still its cost of doing so is
much higher than solving (4.2) as the result of the simple Galerkin projection,
nonetheless.

5 Application to Lyapunov equation

fADI in Section 2 is a natural extension of the LR-CF ADI [30, 33, 35] for the
Lyapunov Equation

AX + XA∗ = C, (5.1)

where A, C, and unknown X are all n×n, and C is Hermitian. Since, Lyapunov
Equation (5.1) is a special case of Sylvester equation (1.1) with B = −A∗,
previous developments apply upon substituting B = −A∗ and βi = −ᾱi, and
most expressions can be much simplified, too.

In the case of Lyapunov equation it holds Y (k) = Z(k), thus instead of (2.1)
and (2.2) we have

Zk =
(
Z(1) Z(2) · · · Z(k)

)
,

with





Z(1) = (A + ᾱ1I)−1G,

Z(i+1) = (A − αiI)(A + ᾱi+1I)−1Z(i)

= Z(i) − (ᾱi+1 + αi)(A + ᾱi+1I)−1Z(i),

(5.2)

while (2.3) is given by

Xk = ZkDkZ
∗

k , Dk = −2 diag (ℜ(α1)Ir, . . . ,ℜ(αk)Ir) . (5.3)

11

Based on (5.2) and (5.3), an fADI for Lyapunov equation AX+XA∗+GG∗ = 0
is obtained as in Algorithm 3.

Algorithm 3 (fADI for Lyapunov equation AX + XA∗ + GG∗ = 0)

Input: (a) A(m×m), and G(m×r);
(b) ADI shifts {α1, α2, . . .};
(c) k, the number of ADI steps;

Output: Z(m×kr) and D(kr×kr) such that ZDZ∗ approximately
solves Lyapunov equation AX + XA∗ + GG∗ = 0;
1. Z(:,1:r) = (A + ᾱ1I)−1G;
2. for i = 1, 2, . . . , k do
3. Z(:,ir+1:(i+1)r) = Z(:,(i−1)r+1:ir) − (ᾱi+1 + αi)(A + ᾱi+1)

−1Z(:,(i−1)r+1:ir);
5. end for;
6. D = −2 diag (ℜ(α1)Ir, . . . ,ℜ(αk)Ir).

For a stable Lyapunov equation, this essentially gives the so-called Cholesky
Factor ADI (CF-ADI) of Li and White [30] and Low Rank ADI of Penzl [33],
except that in CF-ADI/LR-ADI matrices Di are embedded into Zi. The dif-
ference is that here we have a matrix D. An advantage of doing so is that the
algorithm no longer requires all ℜ(αi) > 0, as must have by [30, 33]. Thus
Algorithm 3 has a larger domain of applicability than its earlier versions.

6 Numerical Experiments

In this section, we shall report several numerical examples to demonstrate that
the Galerkin projection via ADI subspaces can lead to more accurate solutions
than ADI alone.

Example 6.1 This is essentially [9, Example 1], except for C which will be
set to some random rank-1 matrix. Depending on parameters a, b, s and the
dimension n, matrices A, B, and C are generated as follows. First, set

Â =diag(−1,−a,−a2, . . . ,−an−1),

B̂ =diag(1, b, b2, . . . , bn−1),

Ĉ = ĜF̂ ∗,

where Ĝ and F̂ are n× 1 and generated randomly as by randn(n, 1) in MAT-
LAB. Parameters a and b regulate the distribution of the spectra of A and B,
respectively, and therefore their separation. The entries of the solution matrix

12

0 5 10 15 20 25 30
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

k=25

i

ADI
ADI+Galerkin

0 5 10 15 20 25 30
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

k=25

i

ADI
ADI+Galerkin

Fig. 6.1. Relative residual errors for ADI solutions and solutions by Galerkin pro-
jection via ADI subspaces for two different runs for Example 6.1 with (6.1).

to ÂX̂ − X̂B̂ = Ĉ are then given by

X̂(i,j) =
Ĉ(i,j)

Â(i,i) − B̂(j,j)

.

Next we employ a transformation matrix to define

A = T−T ÂTT, B = TB̂T−1, G = T−T Ĝ, F = F̂ T−1,

where T = H2SH1 ∈ Cn×n is defined through

H1 = In − 2

n
h1h

T
1 , h1 = (1, 1, . . . , 1)T,

H2 = In − 2

n
h2h

T
2 , h2 = (1,−1, . . . , (−1)n−1)T,

S =diag(1, s, . . . , sn−1).

The scalar s is used here to regulate the conditioning of T . Because of the
way they are constructed, each linear system with shifted A or B costs O(n)
flops to solve. In all our tests reported here, k = 25 and n = 500. We tested
Algorithms 1 and 2 on two sets of parameter values:

a = 1.03, b = 1.008, s = 1.001; (6.1)

a = 1.03eιθ, b = 1.008eιθ, s = 1.001, (6.2)

where ι =
√
−1 and θ = π/(2n). The values given in (6.1) were the ones used

in [9]. In applying Algorithm 2, each Arnoldi run takes 35 steps and 17 best

13

Fig. 6.2. Relative residual errors for ADI solutions and solutions by Galerkin pro-
jection via ADI subspaces for two different runs for Example 6.1 with (6.2).

Ritz values are taken, and thus both E and F have 34 values among which 25
are selected in the end. Our fADI produces an approximation Xk = ZkDkY

∗

k ,
along with intermediate approximations Xi = ZiDiY

∗

i for i ≤ k. For two runs
with different random F and G, Figures 6.1 and 6.2 plot the relative residual
errors

‖AXi − XiB − GF ∗‖F

‖GF ∗‖F

(marked as “ADI”), as well as the relative residual errors for the approxima-
tions UiWiV

∗

i by Galerkin projection (4.2) (marked as “ADI+Galerkin”). We
have run tests on each parameter set many times with different random F and
G, and the residual behaviors are all similar to those plotted in Figures 6.1
and 6.2. In both figures, Galerkin projection via ADI subspaces produces bet-
ter approximations after i ≥ 7 and the improvements are up to more than 2
decimal digits. 3

Example 6.2 Chahlaoui and Van Dooren [12] compiled a collection of bench-
mark examples for model reduction. Except those for descriptor systems, these
examples give rise to Lyapunov equations AX + XA∗ + GG∗ = 0. Simplified
versions of Algorithms 1 and 2 upon substituting B = −A∗ and F = −G∗

can be applied. We have tested ADI and Galerkin projection via ADI sub-
spaces on these equations, and found out both performs badly when A is
highly non-normal in the sense that ‖A‖2

F and ‖A‖2
F−

∑
j |λj |2 are of the same

magnitude and
∑

j |λj|2 ≪ ‖A‖2
F, where {λj} consists of all A’s eigenvalues.

In the collection, there are two other examples whose A are in fact normal,
i.e., ‖A‖2

F =
∑

j |λj|2. We now report our numerical results on them. The first

14

0 10 20 30 40 50 60 70
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

i

k=66

ADI

ADI+Galerkin

Fig. 6.3. Relative residual errors for ADI solutions and solutions by Galerkin pro-
jection via ADI subspaces. Left: FOM in [12]; Right: HEAT in [12].

example is FOM: A = diag(A1, A2, A3, A4) with

A1 =




−1 100

−100 −1


 , A2 =




−1 200

−200 −1


 , A3 =




−1 400

−400 −1


 ,

A4 = diag(−1,−2, . . . ,−1000), and G = (10, . . . , 10︸ ︷︷ ︸
6

, 1, . . . , 1︸ ︷︷ ︸
1000

)T. So n = 1006

and each linear system with shifted A or A∗ takes O(n) flops to solve. Apply
Algorithms 1 and 2 with k = 66, where for Algorithm 2, each Arnoldi run
takes 76 steps and 38 best Ritz values are taken, and thus E has 76 values
among which 66 are selected in the end. The left of Figure 6.3 plots the relative
residual errors for ADI solutions and solutions by Galerkin projection via ADI
subspaces, as explained in Example 6.1. For this example, ADI barely does
anything while projection ADI subspace method does extremely well.

The other example is from discretizing the 1-D heat equation. A is real sym-
metric tridiagonal. Thus each linear system with shifted A or A∗ takes O(n)
flops to solve. The size of A can be made as large as one wishes. As in [12],
we take n = 200, and A has diagonal entries −808 and off-diagonal entries
404, and all of G’s entries are zero, except G(67) = 1. With k = 20 for Algo-
rithm 2, each Arnoldi run takes 30 steps and 15 best Ritz values are taken,
and thus E has 30 values among which 20 are selected in the end. The right of
Figure 6.3 plots the relative residual errors for ADI solutions and for solutions
by Galerkin projection via projection ADI subspaces method. 3

Example 6.3 This is a Sylvester equation AX − XB = GF ∗ with real sym-
metric A and B, both taken from the Harwell-Boeing Collection. In fact,

15

Fig. 6.4. Relative residual errors for ADI solutions and solutions by Galerkin pro-
jection via ADI subspaces for Example 6.3. Left: k = 34; Right: k = 44.

A(675×675) is NOS6 and B(468×468) is negative NOS5 from Set LANPRO 4 .
G and F are taken to be random vectors. Sylvester equations so constructed
are solely for our testing purpose because there is no physical background yet
for combining the two matrices together in one Sylvester equation. Both A
and B are sparse and in fact very narrow-banded, and each linear system with
shifted A or B costs O(m) or O(n) flops to solve, respectively.

Figure 6.4 plots the relative residual errors for ADI solutions and solutions by
Galerkin projection via ADI subspaces for k = 34 (left) and k = 44 (right)
by applying Algorithms 1 and 2. For k = 34, in Algorithm 2 each Arnoldi
run takes 44 steps and 22 best Ritz values are taken, and thus both E and
F have 44 values among which 34 are selected in the end; and for k = 44,
in Algorithm 2 each Arnoldi run takes 54 steps and 27 best Ritz values are
taken, and thus both E and F have 54 values among which 44 are selected in
the end. 3

7 Conclusions

We have presented a factored ADI for Sylvester equation AX − XB = GF ∗,
Lyapunov equation as a special case included. It is based on a set of formulas
which generalize corresponding ones in the CF-ADI for Lyapunov equation.
They enable one to compute the columns of the left factor and the rows of
the right factor one block per step. We also demonstrate that often much
more accurate solutions than the ADI solutions can be gotten by performing

4
http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/lanpro/lanpro.html.

16

Galerkin projection using the column spaces and row spaces of the computed
approximate solutions.

References

[1] A. C. Antoulas, Approximation of Large-Scale Dynamical Systems, Advances
in Design and Control, SIAM, Philadelphia, PA, 2005.

[2] L. Bao, Y. Lin and Y. Wei, A new projection method for solving large Sylvester
equations, Appl. Numer. Math. 57 (5–7) (2007) 521–532.

[3] R. H. Bartels and G. W. Stewart, Algorithm 432: The solution of the matrix
equation AX − BX = C, Commun. ACM (8) (1972) 820–826.

[4] U. Baur and P. Benner, Cross-gramian based model reduction for data-sparse
systems, Tech. rep., Fakultät für Mathematik, TU Chemnitz, 09107 Chemnitz,
FRG, submitted for publication 2007.

[5] P. Benner, Solving large-scale control problems, IEEE Control Systems Maga-
zine 14 (1)(2004) 44–59.

[6] P. Benner, The matrix factorization paradigm in solving matrix equations,
Householder Symposium XVI, Seven Springs, PA, available electronically at
http://www.tu-chemnitz.de/~benner/talks/hh05.pdf (May 2005).

[7] P. Benner, J.-R. Li and T. Penzl, Numerical solution of large Lyapunov equa-
tions, Riccati equations, and linear-quadratic control problems, Numer. Lin.
Alg. Appl., to appear, 2008.

[8] P. Benner, H. Mena and J. Saak, On the parameter selection problem in the
Newton-ADI iteration for large-scale Riccati equations, Electr. Trans. Num.
Anal. 29 (2008) 136–149.

[9] P. Benner, E. Quintana-Ort́ı and G. Quintana-Ort́ı, Solving stable Sylvester
equations via rational iterative schemes, J. Sci. Comput. 28 (2006) 51–83.

[10] R. Bhatia and P. Rosenthal, How and why to solve the operator equation
AX − XB = Y , Bull. London Math. Soc. 29 (1997) 1–21.

[11] D. Calvetti and L. Reichel, Application of ADI iterative methods to the restora-
tion of noisy images, SIAM J. Matrix Anal. Appl. 17 (1996) 165–186.

[12] Y. Chahlaoui and P. Van Dooren, A collection of benchmark ex-
amples for model reduction of linear time invariant dynamical sys-
tems, SLICOT Working Notes 2002-2, February 2002, available at
www.win.tue.nl/niconet/NIC2/benchmodred.html.

[13] B. Datta, Numerical Methods for Linear Control Systems, Elsevier Academic
Press, 2004.

[14] J. Demmel, Applied Numerical Linear Algebra, SIAM, Phildelphia, 1997.
[15] F. Ding and T. Chen, Hierarchical gradient-based identification of multivariable

discrete-time systems. Automatica, 41 (2) (2005) 315–325.
[16] F. Ding and T. Chen, Hierarchical least squares identification methods for

multivariable systems. IEEE Transactions on Automatic Control, 50 (3) (2005)
397–402.

[17] F. Ding and T. Chen, On Iterative Solutions of General Coupled Matrix Equa-
tions, SIAM J. Cont. Opt. 44 (6) (2005) 2269–2284.

[18] F. Ding and T. Chen, Gradient based iterative algorithms for solving a class

17

of matrix equations, IEEE Transactions on Automatic Control 50 (8) (2005)
1216–1221.

[19] F. Ding and T. Chen, Iterative least squares solutions of coupled Sylvester
matrix equations, Systems and Control Letters 54 (2) (2005) 95–107.

[20] A. El Guennouni, K. Jbilou and J. Riquet, Block Krylov subspace methods for
solving large Sylvester equations, Numer. Algorithms 29 (2002) 75–96.

[21] N. S. Ellner and E. L. Wachspress, Alternating direction implicit iteration for
systems with complex spectra, SIAM J. Num. Anal. 3 (1991) 859–870.

[22] W. Enright, Improving the efficiency of matrix operations in the numerical
solution of stiff ordinary differential equations, ACM Trans. Math. Softw. 4
(1978) 127–136.

[23] F. Ding, P. X. Liub and J. Ding, Iterative solutions of the generalized Sylvester
matrix equations by using the hierarchical identification principle, Applied
Mathematics and Computation 197 (2008) 41-50.

[24] G. H. Golub, S. Nash and C. F. Van Loan, Hessenberg-Schur method for the
problem AX + XB = C, IEEE Trans. Automat. Control, AC-24 (1979) 909–
913.

[25] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins Uni-
versity Press, Baltimore, Maryland, 3rd ed., 1996.

[26] S. Gugercin, D. Sorensen and A. Antoulas, A modified low-rank Smith method
for large-scale, Numerical Algorithms 32 (2003) 27–55.

[27] D. Y. Hu and L. Reichel, Krylov-subspace methods for the Sylvester equation,
Linear Algebra Appl. 172 (1992) 283–313.

[28] K. Jbilou, Low rank approximate solutions to large Sylvester matrix equations,
Appl. Math. Comput. 177 (2006) 365–376.

[29] P. Lancaster and M. Tismenetsky, The Theory of Matrices, 2nd ed., Academic
Press, Orlando, 1985.

[30] J.-R. Li and J. White, Low-rank solution of Lyapunov equations, SIAM J.
Matrix Anal. Appl. 24 (2002) 260–280.

[31] , Low-rank solution of Lyapunov equations, SIAM Rev. 46 (2004) 693–713.
[32] A. Lu and E. Wachspress, Solution of Lyapunov equations by ADI iteration,

Comp. Math. Appl. 21 (1991) 43–58.
[33] T. Penzl, A cyclic low-rank smith method for large sparse Lyapunov equations,

SIAM J. Sci. Comput. 21 (2000) 1401–1418.
[34] , Eigenvalue decay bounds for solutions of Lyapunov equations: the sym-

metric case, Systems Control Lett. 40 (2000) 139–144.
[35] , LYAPACK: A MATLAB toolbox for large Lyapunov and

Riccati equations, model reduction problems, and linear-quadratic
optimal control problems, users’ guide (ver. 1.0), available at
www.tu-chemnitz.de/sfb393/lyapack/, 2000.

[36] J. Sabino, Solution of Large-Scale Lyapunov Equations via the Block Modified
Smith Method, PhD thesis, Rice University, Houston, Texas, 2006.

[37] V. Simoncini, On the numerical solution of AX − XB = C, BIT 36 (1996)
814–830.

[38] , A new iterative method for solving large-scale Lyapunov matrix equa-
tions, SIAM J. Sci. Comput. 29 (2007) 1268–1288.

[39] D. Sorensen and A. Antoulas, The Sylvester equation and approximate bal-

18

anced reduction, Linear Algebra Appl. 351/352 (2002) 671–700.
[40] N. Truhar and R.-C. Li, On ADI Method for Sylvester Equations, Technical

Report 2008-02, Department of Mathematics, University of Texas at Arlington,
2008, available at http://www.uta.edu/math/preprint/rep2008 02.pdf.

[41] E. L. Wachspress, Iterative solution of the Lyapunov matrix equation, Appl.
Math. Lett. 1 (1988) 87–90.

[42] E. L. Wachspress, The ADI Model Problem, Windsor, CA, 1995.
[43] E. Wachspress, Trail to a Lyapunov equation solver, Computers & Mathematics

with Applications 55 (2008) 1653–1659.
[44] E. Wachspress, Adi Iteration Parameters For Solving Lyapunov And Sylvester

Equations, Technical Report, March, 2009

19

