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t. Given the positions of n sites in a radio network we 
onsiderthe problem of �nding routes between any pair of sites that minimizeenergy 
onsumption and do not use more than some 
onstant number kof hops. Known exa
t algorithms for this problem required 
(n log n) perquery pair (p; q). In this paper we relax the exa
tness requirement andonly 
ompute approximate (1+�) solutions whi
h allows us to guarantee
onstant query time using linear spa
e and O(n log n) prepro
essing time.The dependen
e on � is polynomial in 1=�.One tool we employ might be of independent interest: For any pair ofpoints (p; q) 2 P � Z2 we 
an report in 
onstant time the 
luster pair(A;B) representing (p; q) in a well-separated pair de
omposition of P .1 Introdu
tion

Fig. 1. A Radio Network and 9; 4; 2; 1-hop pathsfrom P to Q with 
osts 9, 36, 50, 100

Radio networks 
onne
t-ing a number of sta-tions without additionalinfrastru
ture have re-
ently gained 
onsider-able interest. Sin
e thesites often have limitedpower supply, the energy
onsumption of 
ommu-ni
ation is an impor-tant optimization 
rite-rion. We study this prob-lem using the followingsimple geometri
 graphmodel: Given a set P of npoints in Z2, we 
onsiderthe 
omplete graph (P; P�P ) with edge weight !(p; q) = jpqjÆ for some 
onstantÆ > 1 where jpqj denotes the Eu
lidean distan
e between p and q. The obje
tiveis to �nd an approximate shortest path between two query points subje
t to the? This work was partially supported by the IST Programme of the EU under 
ontra
tnumber IST-1999-14186 (ALCOM-FT).




onstraint that at most k edges of the graph are used in the path. For Æ = 2 theedge weights re
e
t the exa
t energy requirement for free spa
e 
ommuni
ation.For larger values of Æ (typi
ally between 2 and 4), we get a popular heuristi
model for absorption e�e
ts [Rap96,Pat00℄. Limiting the number of `hops' to k
an a

ount for the distan
e independent overhead for using intermediate nodes.For a model with node dependent overheads refer to Se
tion 4.Our main result is a data stru
ture that uses linear spa
e and 
an be built intime O(n logn) for any 
onstants k, Æ > 1, and � > 0. In 
onstant time it allowsto 
ompute k-hop paths between arbitrary query points that are within a fa
tor(1 + �) from optimal. When k, Æ, and � are 
onsidered variables, the query timeremains 
onstant and the prepro
essing time is bounded by a polynomial in k,Æ, and 1=�.The algorithm has two main ingredients that are of independent interest.The �rst part, dis
ussed in Se
tion 2, is based on the observation that for ap-proximately optimal paths it suÆ
es to 
ompute a shortest path for a 
onstantsize subset of the points | one point for ea
h square 
ell in some grid that de-pends on the query points. This subset 
an be 
omputed in time O(logn) usingwell known data stru
tures supporting (approximate) quadrati
 range queries[BKOS,AM00℄. These data stru
tures and in parti
ular their spa
e requirementare independent of k, Æ, and �. Some variants even allow insertion and deletionof points in O(logn) time. Se
tion 3 dis
usses the se
ond ingredient. Well sep-arated pair de
ompositions [CK92℄ allow us to answer arbitrary approximatepath queries by pre
omputing a linear number of queries. We develop a way toa

ess these pre
omputed paths in 
onstant time using hashing. This te
hniqueis independent of path queries and 
an be used for retrieving any kind of infor-mation stored in well separated pair de
ompositions. Se
tion 4 dis
usses furthergeneralizations and open problems.This extended abstra
t omits most proofs whi
h 
an be found in the longversion of the paper.Related Work Chan, Efrat, and Har-Peled [EH98,CE01℄ observe that for!(p; q) = f(jpqjÆ) and Æ � 2, exa
t geometri
 shortest paths are equivalentto shortest paths in the Delaunay triangulation of P , i.e., optimal paths 
an be
omputed in time O(n logn). Note that this approa
h 
ompletely 
ollapses for khop paths be
ause most Delaunay edges are very short. The main 
ontributionof Chan et al. is a sophisti
ated O(n4=3+
) time algorithm for 
omputing exa
tgeometri
 shortest paths for monotone 
ost fun
tions !(p; q) = f(jpqj) where
 is any positive 
onstant. For quadrati
 
ost fun
tions with o�sets !(p; q) =jpqj2+C, Beier, Sanders, and Sivadasan redu
e that to O(n1+
), to O(kn logn)for k-hop paths, and to O(logn) time queries for two hop paths using linearspa
e and O(n logn) time prepro
essing. The latter result is very simple, it usesVoronoi diagrams and an asso
iated point lo
ation data stru
ture.Thorup and Zwi
k [ThoZwi01℄ show that for general graphs and unrestri
tedk, it is impossible to 
onstru
t a distan
e ora
le whi
h answers queries 2a � 1approximatively using spa
e o(nn1=a).



2 Fast Approximate k-hop Path QueriesWe 
onsider the following problem: Given a set P of n points in Z2 and some
onstant k, report for a given query pair of points p; q 2 P , a polygonal path� = �(p; q) = v0v1v2 : : : vl, with verti
es vi 2 P and v0 = p; vl = q whi
h 
onsistsof at most k segments, i.e. l � k, su
h that its weight !(�) =P0�i<l !(vi; vi+1)is minimized. By �opt = �opt(p; q) we denote an optimal path from p to q underthis 
riterion.In the following we assume that the weight fun
tion ! is of the form !(a; b) =jabjÆ with Æ > 1 (the 
ase Æ � 1 is trivial as we just need to 
onne
t p and qdire
tly by one hop).2.1 PreliminariesBefore we introdu
e our pro
edure for reporting approximate k-hop paths, weneed to refer to some standard data stru
tures from Computational Geometrywhi
h will be used in our algorithm.Theorem 1 (Exa
t Range Query). Given a set P of n points in Z2 one 
anbuild a data stru
ture of size O(n logn) in time O(n logn) whi
h for a given axisaligned query re
tangle R = [xl; xu℄� [yl; yu℄ reports in O(logn) time either thatR 
ontains no point or outputs a point p 2 P \ R.The data stru
ture 
an be maintained dynami
ally su
h that points 
an beinserted and deleted in O(logn log logn) amortized time. The prepro
essing timethen in
reases to O(n logn log logn) and the query time to O(logn log logn). Allthe log logn fa
tors 
an be removed if only either insertions or deletions areallowed.Proof. We use the standard 2-level range-tree 
onstru
tion. From the resultingO(log2 n) query time we 
an get rid of one logn by fra
tional 
as
ading, see[BKOS℄. The whole 
onstru
tion 
an be maintained dynami
ally allowing inser-tions and deletions using the results in [MN90℄. utIn fa
t, the algorithm we will present will also work with an approximaterange reporting data stru
ture su
h as the one presented in [AM00,AM98℄. Thepart of their result relevant for us 
an be stated in the following theorem:Theorem 2 (Approximate Range Query). Given a set P of n points inZ2 one 
an build a data stru
ture of size O(n) in time O(n logn) whi
h for agiven axis aligned query re
tangle R = [xl; xu℄� [yl; yu℄ with diameter ! reportsin O(logn + 1�) time either that the re
tangle R0 = [xl + �!; xu + �!℄ � [yl +�!; yu + �!℄ 
ontains no point or outputs a point p 2 P \ R0.The data stru
ture 
an be maintained dynami
ally su
h that points 
an beinserted and deleted in O(logn) time.Basi
ally this approximate range sear
hing data stru
ture works well if thequery re
tangle is fat; and sin
e our algorithm we present in the next se
tion



will only query square re
tangular regions, all the results in [AM00℄ and [AM98℄apply. In fa
t we do not even need � to be very small, � = 1 turns out to be OK.So the use of an approximate range sear
hing data stru
ture helps us to get ridof the logn fa
tor in spa
e and some log logn fa
tors for the dynami
 version.But to keep presentation simple we will assume for the rest of this paper thatwe have an exa
t range sear
hing data stru
ture at hand. Furthermore, let usbrie
y 
ite two well known inequalities that turn out to be of use in the followinganalysis.Minkowski's inequality For some Æ > 1 and ai, bi > 0, Minkowski's suminequality states that� kXi=1(ai + bi)Æ� 1Æ � � kXi=1 aÆi� 1Æ +� kXi=1 bÆi� 1Æ :H�older's inequality Let 1p + 1q = 1with p, q > 1. Then, for some ai, bi > 0 H�older's inequality for sums states thatkXi=1 aibi � � kXi=1 api� 1p� kXi=1 bqi� 1q :Equality holds when bi = 
ap�1i , for some 
 > 0.2.2 Computing Approximate k-hop Paths for many PointsWe will now fo
us on how to pro
ess a k-hop path query for a pair of points p andq assuming that we have already 
onstru
ted the data stru
ture for orthogonalrange queries (whi
h 
an be done in time O(n logn)).Lemma 1. For the optimal path �opt 
onne
ting p and q we have jpqjÆkÆ�1 �j�optj � jpqjÆ.Proof. As we 
an 
onne
t p and q dire
tly using one hop, the upper bound followsimmediately. For the lower bound observe that the 
heapest way to 
onne
t pand q is to divide the segment pq into k subsegments of equal length, whi
hyields the lower bound. utDe�nition 1. We de�ne the axis-aligned square of side-length l 
entered at themidpoint of a segment pq as the frame of p and q, F(pq; l).Lemma 2. The optimal path �opt 
onne
ting p and q lies within the frameF(pq; k(Æ�1)=Æ jpqj) of p and q.



Proof. Assume that the optimal path visits some point r outside the frame F .Note that su
h a path has Eu
lidean length at least jprj+ jrqj > k(Æ�1)=Æjpqj andtherefore the 
ost is lower bounded by (jprj+jrqj)ÆkÆ�1 > (k(Æ�1)=Æ jpqj)ÆkÆ�1 = jpqjÆ whi
hin turn implies that doing one dire
t hop from p to q is even better. utWe are now armed to state our algorithm to 
ompute a k-hop path whi
h isa (1 + �) approximation to the optimal k-hop path from p to q.
QP

�jPQj=kk Æ�1Æ jPQjFig. 2. 3-hop-query for P and Q: representatives for ea
h 
ell are denoted as solidpoints, the optimal path is drawn dotted, the path 
omputed by the algorithm solidk-hop-Query(p,q, �)1. Put a grid of 
ell-width � � jpqj=k on the frame F(pq; k(Æ�1)=Æ jpqj) with � =14p2 � �Æ .2. For ea
h grid 
ell C perform an orthogonal range query to either 
ertify thatthe 
ell is empty or report one point inside whi
h will serve as a representativefor C .3. Compute the optimal k-hop path �(p; q) with respe
t to all representativesand fp; qg.4. Return �(p; q)Please look at Figure 2.2 for a s
hemati
 drawing of how the algorithm 
om-putes the approximate k-hop path. It remains to argue about 
orre
tness andrunning time of our algorithm. Let us �rst 
onsider its running time.



Lemma 3. k-hop-Query(p, q, �) 
an be implemented to return a result in timeO( Æ2�k(4Æ�2)=Æ�2 � TR(n) + Tk;Æ( Æ2�k(4Æ�2)=Æ�2 )), where TR(n) denotes the time for one2-dimensional range query on the original set of n points and Tk;Æ(x) denotesthe time for the exa
t 
omputation of a minimal k-hop path for one pair amongstx points under the weight fun
tion !(pq) = jpqjÆ.Proof. By the 
hoi
e of frame and 
ell width, it is easy to see that in the�rst step of our algorithm we generate a grid of size O(( Æ�k(2Æ�1)=Æ� )2) whi
h isO( Æ2�k(4Æ�2)=Æ�2 ). For ea
h of the 
ells we perform an orthogonal range query ea
hof whi
h takes TR(n) time. For all the representatives whi
h we have found, werun an exa
t minimum k-hop path algorithm whi
h takes Tk;Æ( Æ2�k(4Æ�2)=Æ�2 ). utLet us now turn to the 
orre
tness of our algorithm, i.e. for any given �,we want to show that our algorithm returns a k-hop path of weight at most(1 + �) times the weight of the optimal path. We will show that only using therepresentatives of all the grid 
ells there exists a path of at most this weight.In the following we assume that the optimal path �opt 
onsists of a sequen
e ofpoints p0p1 : : : pj , j � k and li = jpi�1pij.Before we get to the a
tual proof of this 
laim, we need to state a smallte
hni
al lemma.Lemma 4. For any Æ > 1 and li; � > 0 the following inequality holdsPki=1(li + �)ÆPki=1 lÆi �  Pki=1(li + �)Pki=1 li !ÆProof. Note that Minkowski's inequality dire
tly implies� kXi=1(li + �)Æ� 1Æ � � kXi=1 lÆi� 1Æ +� kXi=1 �Æ� 1Æ = � kXi=1 lÆi� 1Æ + k 1Æ � �whi
h in turns give  Pki=1(li + �)ÆPki=1 lÆi ! 1Æ � 1 + k 1Æ � �(Pki=1 lÆi ) 1Æ :Moreover, note that H�older's inequality implies�Pki=1 lÆik � 1Æ � Pki=1 likfor bi = 1, i = 1; : : : ; k, p = Æ and q = ÆÆ�1 , whi
h 
ompletes the proof. utLemma 5. k-hop-Query(p, q, �) 
omputes a k-hop path from p to q of weightat most (1 + �)!(�opt(p; q)) for 0 < � � 1.



Proof. Using Lemma 4, with � denoting the possible error in
urred by takingthe respe
tive representative edge, it is suÆ
ient to show that Pki=1(li + �)Pki=1 li !Æ � 1 + �:Knowing that the absolute 'detour'1 in
urred by repla
ing its endpoints by therespe
tive representatives in their grid 
ell is bounded by � � 2p2� dk we have�1 + k � 2p2� dkPki=1 li �Æ � 1 + �:Thus, observing that (Pki=1 li)=d is at least 1, we get following bound on �� � (1 + �)1=Æ � 12p2 :Consider the fun
tions f(x) = (1+ �)x and g(x) = 1+ ��x2 in the range x 2 [0; 1℄.Clearly, f(0) = g(0) and as for � 2 [0; 1℄,f 0(x)g0(x) = (1 + �)x ln(1 + �)�=2 � 1we have f(x) � g(x) for x 2 [0; 1℄ and therefore it suÆ
e to 
hoose� = 14p2 � �Æ : ut2.3 Computing Optimal k-hop Paths for few PointsIn our approximation algorithm we redu
ed the problem of 
omputing an ap-proximate k-hop path from p to q to one exa
t k-hop path 
omputation of asmall, i.e. 
onstant number of points (only depending on k; Æ and �). Still, wehave not provided a solution for this problem yet. In the following we will present�rst a generi
 algorithm whi
h works for all possible Æ and then qui
kly reviewthe exa
t algorithm presented by [BSS02℄ whi
h only works for the 
ase Æ = 2,though.Layered Graph Constru
tion We 
an 
onsider almost the 
omplete graphwith all edge weights expli
itly stored (ex
ept for too long edges, whi
h 
annotbe part of the optimal solution) and then use the following 
onstru
tion:1 Here the analysis has to be 
hanged slightly when using approximate range reportingdata stru
tures: for � = 1 we might get twi
e the 'detour' assumed here.



Lemma 6. Given a 
onne
ted graph G(V;E) with jV j = n, jEj = m withweights on the edges and one distinguished node s 2 V , one 
an 
ompute forall p 2 V � fsg the path of minimum weight using at most k edges in timeO(km).Proof. We assume that the graph G has self-loop edges (v; v) with assignedweight 0. Constru
t k + 1 
opies V (0); V (1); : : : ; V (k) of the vertex set V anddraw a dire
ted edge (v(i); w(i+1)) i� (v; w) 2 E with the same weight. Computethe distan
es from s(0) to all other nodes in this layered, a
y
li
 graph. Thistakes time O(km) as ea
h edge is relaxed only on
e. utSo in our subproblem we 
an use this algorithm and the property that ea
hrepresentative has O( Æ2k2�2 ) adja
ent edges (all other edges are too long to beuseful) to obtain the following 
orollary:Corollary 1. The subroutine of our algorithm to solve the exa
t k-hop problemon O( Æ2�k(4Æ�2)=Æ�2 ) points 
an be solved in time O( Æ4�k(7Æ�2)=Æ�4 ) for arbitrary Æ; �.Redu
tion to Nearest Neighbor In [BSS02℄ the authors presented an algo-rithm whi
h for the spe
ial 
ase Æ = 2 
omputes the optimal k-hop path in timeO(kn logn) by dynami
 programming and an appli
ation of geometri
 nearestneighbor sear
h stru
tures to speed up the update of the dynami
 programmingtable. Applied to our problem we get the following 
orollary:Corollary 2. The subroutine of our algorithm to solve the exa
t k-hop problemon O(k3�2 ) points 
an be solved in time O(k5�2 � log k� ) if Æ = 2.2.4 SummaryLet us summarize our general result in the following Theorem (we give thebound for the 
ase where an approximate nearest neighbor query data stru
tureas mentioned in Theorem 2 is used).Theorem 3. We 
an 
onstru
t a dynami
 data stru
ture allowing insertionsand deletions with O(n) spa
e and O(n logn) prepro
essing time su
h that (1+�)approximate minimum k-hop path queries under the metri
 !(p; q) = jpqjÆ 
anbe answered in time O( Æ2�k(4Æ�2)=Æ�2 � logn+ Æ4�k(7Æ�2)=Æ�4 ).The query time does not 
hange when using exa
t range query data stru
-tures, only spa
e, prepro
essing and update times get slightly worse (see Theo-rem 1). For the spe
ial 
ase of Æ = 2 we obtain a slightly improved query timeof O( Æ2�k(4Æ�2)=Æ�2 � logn+ Æ2�k(5Æ�2)=Æ�2 � log Æk� )).



3 Pre
omputing Approximate k-hop Paths for ConstantQuery TimeIn the previous se
tion we have seen how to answer a (p; q) query in O(logn)time (
onsidering k; Æ; � as 
onstants). Standard range query data stru
tureswere the only pre
omputed data stru
tures used. Now we explain how additionalpre
omputation 
an further redu
e the query time. We show how to pre
omputea linear number of k-hop paths, su
h that for every (p; q), a slight modi�
ation ofone of these pre
omputed paths is a (1+�)(1+2 )2 approximate k-hop path andsu
h a path 
an be a

essed in 
onstant time. Here  > 0 is the error in
urredby the use of these pre
omputed paths and 
an be 
hosen arbitrarily small (thesize of the well-separated pair de
omposition then grows, though).3.1 The Well-Separated Pair De
ompositionWe will �rst brie
y introdu
e the so-
alled well-separated pair de
omposition dueto Callahan and Kosaraju ([CK92℄).The split-tree of a set P of points in R2 is the tree 
onstru
ted by the followingre
ursive algorithm:SplitTree(P )1. if size(P )=1 then return leaf(P )2. partition P into sets P1 and P2 by halving its minimum en
losing box R(P )along its longest dimension3. return a node with 
hildren (SplitTree(P1), SplitTree(P2))Although su
h a tree might have linear depth and therefore a naive 
on-stru
tion as above takes quadrati
 time, Callahan and Kosaraju in [CK92℄ haveshown how to 
onstru
t su
h a binary tree in O(n logn) time. With every nodeof that tree we 
an 
on
eptually asso
iate the set A of all points 
ontained in itssubtree as well as their minimum en
losing box R(A). By r(A) we denote theradius of the minimum en
losing disk of R(A). We will also use A to denote thenode asso
iated with the set A if we know that su
h a node exists.For two sets A and B asso
iated with two nodes of a split tree, d(A;B)denotes the distan
e between the 
enters of R(A) and R(B) respe
tively. A andB are said to be well-separated if d(A;B) > sr, where r denotes the radius of
Bd
ArFig. 3. Clusters A and B are 'well-separated' if d > s � r



the larger of the two minimum en
losing balls of R(A) and R(B) respe
tively. sis 
alled the separation 
onstant.In [CK92℄, Callahan and Kosaraju present an algorithm whi
h, given a splittree of a point set P with jP j = n and a separation 
onstant s, 
omputes in timeO(n(s2 + logn)) a set of O(n � s2) additional blue edges for the split tree, su
hthat{ the point sets asso
iated with the endpoints of a blue edge are well-separatedwith separation 
onstant s.{ for any pair of leaves (a; b), there exists exa
tly one blue edge that 
onne
tstwo nodes on the paths from a and b to their lowest 
ommon an
estor l
a(a; b)in the split treeThe split tree together with its additional blue edges is 
alled the well-separatedpair de
omposition (WSPD).3.2 Using the WSPD for Pre
omputing Path TemplatesIn fa
t the WSPD is exa
tly what we need to eÆ
iently pre
ompute k-hop pathsfor all possible �(n2) path queries. So we will use the following prepro
essingalgorithm:1. 
ompute a well-separated pair de
omposition of the point set with s =k(Æ�1)=Æ � 8Æ � 1 2. for ea
h blue edge 
ompute a (1 + �)-approximation to the lightest k-hoppath between the 
enters of the asso
iated bounding boxesAt query time, for a given query pair (p; q), it remains to �nd the uniqueblue edge (A;B) whi
h links a node of the path from p to l
a(p; q) to a nodeof the path from q to l
a(p; q). We take the pre
omputed k-hop path asso
iatedwith this blue edge, repla
e its �rst and last node by s and t respe
tively andreturn this modi�ed path.In the following we will show that the returned path is indeed a (1+�)(1+2 )2approximation of the lightest k-hop path from p to q. Later we will also showthat this path 
an be found in 
onstant time. For the remainder of this se
tion let�Popt(x; y) denote the optimal k-hop path between two points x; y not ne
essarilyin P su
h that all hops have starting and end point in P (ex
ept for the �rstand last hop). We �rst start with a lemma whi
h formalizes the intuition thatthe length of an optimal k-hop path does not 
hange mu
h when perturbing thequery points slightly.Lemma 7. Given a set of points P and two pairs of points (a; b) and (a0; b0)with d(a; b) = d and d(a; a0) � 
, d(b; b0) � 
 with 
 �  dk(Æ�1)=Æ �4Æ , then we have!(�Popt(a0; b0)) � (1 + 2 )!(�Popt(a; b).Proof. Consider the path �Popt(a; b) = v0v1 : : : vk with v0 = a, vk = b and 
onsiderits modi�
ation �0 = a0v1 : : : vk�1b0. For the analysis we will distinguish between



the 
ases where the edge (a; v1) ((vk�1;b) respe
tively) is 'long' or 'short'. If(
 + jav1j)Æ � (1 +  )jav1jÆ, we are safe and this is the 
ase when jav1j is longedge, namely jav1j � 
(1+ )1=Æ�1 . So let us now 
onsider the 
ase that (a; v1) isshort. Clearly an upper bound on the 
ost of �Popt(a0; b0) is given by:!(�Popt(a0; b0)) � !(�0) = !(�Popt(a; b))� jav1jÆ + ja0v1jÆ � jbvk�1jÆ + jb0vk�1jÆ� !(�Popt(a; b))� jav1jÆ + (jav1j+ 
)Æ � jbvk�1jÆ + (jbvk�1j+ 
)ÆAnd sin
e for 0 � x < y; Æ � 1 we have (
 + x)Æ � xÆ � (
 + y)Æ � yÆ and therespe
tive edges are short, we 
an 
ontinue with� !(�Popt(a; b)) + 2 � (( 
(1 +  )1=Æ � 1 + 
)Æ � ( 
(1 +  )1=Æ � 1)Æ)= !(�Popt(a; b)) + 2
Æ � (( (1 +  )1=Æ(1 +  )1=Æ � 1)Æ � ( 1(1 +  )1=Æ � 1)Æ)= !(�Popt(a; b)) + 2
Æ �  ((1 +  )1=Æ � 1)Æ� !(�Popt(a; b)) + 2
Æ � (2Æ )Æ� !(�Popt(a; b))(1 + 2
Æ � (2Æ )Æ � kÆ�1dÆ )So �nally it just remains to 
hoose 
 su
h that 2 � ( 2Æ
d )Æ � kÆ�1 Æ�1 �  whi
h is
ertainly true for 
 �  dk(Æ�1)=Æ �4Æ utThe following 
orollary of the above Lemma will be used later in the proof:Corollary 3. Given a set of points P and two pairs of points (a; b) and (a0; b0)with d(a; b) = d and d(a; a0) � 
, d(b; b0) � 
 with 
 �  dk(Æ�1)=Æ �8Æ , then wehave !(�Popt(a0; b0)) � (1 + 2 )!(�Popt(a; b)) as well as !(�Popt(a; b)) � (1 +2 )!(�Popt(a0; b0).Proof. Clearly the �rst 
laim holds a

ording to Lemma 7. For the se
ond oneobserve that d0 = ja0b0j � d� 2 � 
 and then apply the Lemma again. utApplying this Corollary, it is now straightforward to see that the approxima-tion ratio of the modi�ed template path is (1 + 2 )2(1 + �).Lemma 8. Given a well separated pair de
omposition of a point set P � Z2with separation 
onstant s = k(Æ�1)=Æ �8Æ , the path �(p; q) returned for a querypair (p; q) is a (1 + 2 )2(1 + �) approximate k-hop path from p to q.Proof. Let (A;B) be the unique 
luster pair 
onne
ted by a blue edge with p 2 A,q 2 B, 
A; 
B their respe
tive 
luster 
enters. By the 
hoi
e of the separationparameter and Lemma 7, we know that jp
Aj; jq
B j �  j
A
B jk(Æ�1)=Æ �8Æ and therefore!(�(p; q)) � (1 + 2 )(1 + �)!(�opt(
A; 
B)) � (1 + 2 )2(1 + �)!(�(p; q)). utWe leave it to the reader to �gure out the right 
hoi
e for  and � to obtain anarbitrary approximation quality of (1 + �), but 
learly  ; � 2 
(�).



3.3 Retrieving Cluster Pairs for query points in O(1) timeIn the previous paragraphs we have shown that using properties of the well-separated pair de
omposition, it is possible to 
ompute O(n) 'template paths'su
h that for any query pair (s; t) out of the 
(n2) possible query pairs, thereexists a good template path whi
h we 
an modify to obtain a good approximationto the lightest k-hop path from s to t. Still, we have not shown yet how todetermine this good template path for a given query pair (s; t) in 
onstant time.We note that the following des
ription does not use any spe
ial property of ouroriginal problem setting, so it may apply to other problems, where the well-separated pair de
omposition 
an be used to en
ode in O(n) spa
e suÆ
ientinformation to 
over a query spa
e of 
(n2) size.Gridding the Cluster Pairs The idea of our approa
h is to round the 
enters
A; 
B of a 
luster pair (A;B) whi
h is part of the WSPD to 
anoni
al grid pointsf
A;f
B su
h that for any query pair (s; t) we 
an determine f
A;f
B in 
onstanttime. Furthermore we will show that there is only a 
onstant number of 
lusterpairs (A0; B0) whi
h have their 
luster 
enters rounded to the same grid positionsf
A;f
B , so well-known hashing te
hniques 
an be used to store and retrieve therespe
tive blue edge and also some additional information I(A;B) (in our 
ase:the pre
omputed k-hop path) asso
iated with that edge.In the following we assume that we have already 
onstru
ted a WSPD of thepoint set P with a separation 
onstant s > 4. For any point p 2 Z2, let snap(p; w)denote the 
losest grid-point of the grid with 
ell-width w originated at (0; 0)and let H : Z4! (I �E)� denote a hash table data stru
ture whi
h maps pairsof integer points in the plane to a list of pairs 
onsisting of some informationtype and a (blue) edge in the WSPD. Using universal hashing [CW79℄ this datastru
ture has 
onstant expe
ted a

ess time.
g
A g
B 2dlog(d=s)ed = j
A
B jFig. 4. Cluster 
enters 
A and 
B are snapped to 
losest grid points f
A and f
BPrepro
essing{ For every blue edge 
onne
ting 
lusters (A;B) in the split tree� 
A  
enter(R(A)), 
B  
enter(R(B))� w  j
A
B j=s� ew  2dlogwe



� f
A  snap(
A; ew)� f
B  snap(
B ; ew)� Append ((I(A;B); (A;B))) to H [(f
A;f
B)℄Look at Figure 4 for a sket
h of the prepro
essing routine for one 
luster pair(A;B). Clearly this prepro
essing step takes linear time in the size of the WSPD.So given a query pair (s; t), how to retrieve the information I(A;B) stored withthe unique 
luster pair (A;B) with s 2 A and t 2 B?Query(p; q){ w0  jpqj=s{ fw1  2dlogw0e�1{ fw2  2dlogw0e{ fw3  2dlogw0e+1{ for grid-widths wi, i = 1; 2; 3 and adja
ent grid-points e
p; e
q of p and qrespe
tively� Inspe
t all items (I(A;B); (A;B)) in H [( e
p; e
q)℄� if p 2 A and q 2 B return I(A;B)In this des
ription we 
all a grid-point eg adja
ent to a point p if jegpjx; jegpjy < 32 ew,where j � jx=y denotes the horizontal/verti
al distan
e. Clearly there are at most9 adja
ent points for any point p in a grid of width ew. In the remainder of thisse
tion we will show that this query pro
edure outputs the 
orre
t result (theunique I(A;B) with s 2 A and t 2 B su
h that (A;B) is blue edge in the WSPD)and requires only 
onstant time. In the following we sti
k to the notation thatew = 2dlog j
A
Bj=se, where 
A; 
B are the 
luster 
enters of the 
luster pair (A;B)we are looking for.Lemma 9. For s > 4, we have fwi = ew for some i 2 f1; 2; 3g.Proof. As A and B are well-separated and p 2 A and q 2 B, we know thatj
Apj; j
Bqj < j
A
B j=s. Therefore j
A
B j(1� 2=s) < jpqj < j
A
B j(1 + 2=s) andhen
e dlog j
A
B j(1� 2=s)s e < dlog jpqjs e < dlog j
A
B j(1 + 2=s)s eUsing the fa
t that s > 4 we obtaindlog j
A
B js � 1e < dlog jpqjs e < dlog j
A
B js + 1eand therefore dlog j
A
B js e � 1 < dlog jpqjs e < dlog j
A
B js e+ 1whi
h proves the Lemma. ut



This Lemma says that at some point the query pro
edure uses the 
orre
tgrid-width as determined by 
A and 
B . Furthermore for any given grid-widthand a pair of query points p and q, there are at most 9 � 9 = 81 pairs of adja
entgrid points to inspe
t. We still need to argue that given the 
orre
t grid-widthew, the 
orre
t pair of grid points (f
A;f
B) is amongst these � 81 possible pairsof grid points that are inspe
ted.Lemma 10. For fwi = ew, f
A and f
B are amongst the inspe
ted grid-points.Proof. In the following we will restri
t on the part to show that 
A is adja
entto p. Clearly we have j
Apj < j
A
Bjs � ew, so in parti
ular j
Apjx; j
Apjy < ew.Furthermore j
Af
Ajx; j
Af
Ajy;� ew=2 and hen
e jf
Apjx=y < 32 ew, i.e. 
A is adja
entto p. utThe last thing to show is that only a 
onstant number of 
luster pairs (A;B)
an be rounded during the prepro
essing phase to a spe
i�
 pair of grid positions( eg1; eg2) and therefore we only have to s
an a list of 
onstant size that is asso
iatedwith ( eg1; eg2). Before we 
an prove this, we have to 
ite a Lemma from the originalwork of Callahan and Kosaraju on the WSPD [CK92℄.Lemma 11 (CK92). Let C be a d-
ube and let S = fA1; : : : ; Alg be a set ofnodes in the split tree su
h that Ai\Aj = ; and lmax(p(Ai)) � l(C)=
 and R(Ai)overlaps C for all i. Then we have l � (3
+ 2)d.Here p(A) denotes the parent of a node A in the split tree, lmax(A) the longestside of the minimum en
losing box of R(A).Lemma 12. Consider a WSPD of a point set P with separation 
onstant s > 4,grid width ew and a pair of grid points ( eg1; eg2). The number of 
luster pairs (A;B)su
h that 
A and 
B are rounded to ( eg1; eg2) is O(1).Proof. In the following we will establish a lower bound on r(p(A)) su
h thatwe 
an apply Lemma 11, sin
e r(p(A)) � lmax(p(A)). As (p(A); B) is not ablue edge in the WSPD we have r(p(A)) > j
p(A)
Bjs . Furthermore j
p(A)
B j �j
A
B j � r(p(A)) and hen
e using the fa
t that s ew2 < j
A
B j � s ew we obtain thefollowing lower bound r(p(A) > s ew2 + 2s = ew2 + 2=sSo for s > 4 we obtain lmax(p(A)) > 25 ew Before we 
an apply Lemma 11, observethat if the 
lusters around eg1 whi
h are paired with some 
lusters around eg2 arenot disjoint (i.e. one is the parent of another), we 
an just re�ne those 
lustersuntil no 
luster is the parent of another, this will only in
rease the number oflinks to 'the other side'. But applying Lemma 11 for the 
ube 
entered at eg1with side-length ew and 
 = 5=2 bounds even this larger number of 
lusters by(3�5=2+2)2 < 91. As the same bound holds for the 
lusters around eg2, the numberof 
luster pairs that might be assigned to ( eg1; eg2) is less than 91 � 91 < 9000 andtherefore O(1). ut



Putting everything together we get the main theorem of this se
tion:Theorem 4. Given a well-separated pair de
omposition of a point set P withseparation 
onstant s > 4. Then we 
an 
onstru
t a data stru
ture in spa
eO(n � s2) and 
onstru
tion time O(n � s2) su
h that for any pair of points (p; q)in P we 
an determine the unique pair of 
lusters (A;B) that is part the well-separated pair de
omposition with p 2 A, q 2 B in 
onstant time.Together with the results of the previous Se
tion we obtain the followingmain result of our paper:Theorem 5. Given a set of points P � Z2, a distan
e fun
tion ! : Z�Z! R+of the form !(p; q) = jpqjÆ, where Æ � 1 and k � 2 are 
onstants, we 
an
onstru
t a data stru
ture of size O( 1�2 �n) in prepro
essing time O( 1�4 �n logn+1�6 �n) su
h that for any query (p; q) from P , a (1+�)-approximate lightest k-hoppath from p to q 
an be obtained in 
onstant O(1) time whi
h does not dependon Æ; �; k.We also remark that there are te
hniques to maintain the well-separated pairde
omposition dynami
ally, and so our whole 
onstru
tion 
an be made dynami
as well (see [CK95℄).4 Dis
ussionWe have developed a data stru
ture for 
onstant approximate shortest pathqueries in a simple model for geometri
 graphs. Although this model is motivatedby 
ommuni
ation in radio networks, it is suÆ
iently simple to be of independenttheoreti
al interest and possibly for other appli
ations. For example, Chan, Efrat,and Har-Peled [EH98,CE01℄ use similar 
on
epts to model the fuel 
onsumptionof airplanes routed between a set P of airports.We 
an also further re�ne the model. For example, the above 
ight appli
a-tion would require more general 
ost fun
tions. Here is one su
h generalization:If the 
ost of edge (p; q) is jpqjÆ+Cp for a node dependent 
ost o�set Cp, our re-sult remains appli
able under the assumption of some bound on the o�set 
osts.In Lemma 5 we would 
hoose the 
ell representative as the node with minimumo�set in the 
ell (this 
an be easily in
orporated into the standard geometri
range query data stru
tures). The o�set 
ould model distan
e independent en-ergy 
onsumption like signal pro
essing 
osts or it 
ould be used to steer awaytraÆ
 from devi
es with low battery power.Referen
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